Skip to main content

Accelerating Stochastic Composition Optimization

Author(s): Wang, Mengdi; Liu, Ji; Fang, Ethan X.

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr11217
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWang, Mengdi-
dc.contributor.authorLiu, Ji-
dc.contributor.authorFang, Ethan X.-
dc.date.accessioned2020-03-02T17:22:41Z-
dc.date.available2020-03-02T17:22:41Z-
dc.date.issued2017-10-17en_US
dc.identifier.citationWang, Mengdi, Ji Liu, and Ethan X. Fang. "Accelerating stochastic composition optimization." The Journal of Machine Learning Research 18, no. 1 (2017): 3721-3743. http://www.jmlr.org/papers/volume18/16-504/16-504.pdfen_US
dc.identifier.issn1532-4435-
dc.identifier.urihttp://www.jmlr.org/papers/volume18/16-504/16-504.pdf-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr11217-
dc.description.abstractWe consider the stochastic nested composition optimization problem where the objective is a composition of two expected-value functions. We propose a new stochastic first-order method, namely the accelerated stochastic compositional proximal gradient (ASC-PG) method. This algorithm updates the solution based on noisy gradient queries using a two-timescale iteration. The ASC-PG is the first proximal gradient method for the stochastic composition problem that can deal with nonsmooth regularization penalty. We show that the ASC-PG exhibits faster convergence than the best known algorithms, and that it achieves the optimal sample-error complexity in several important special cases. We demonstrate the application of ASC-PG to reinforcement learning and conduct numerical experiments.en_US
dc.format.extent3721 - 3743en_US
dc.language.isoen_USen_US
dc.relation.ispartofJournal of Machine Learning Researchen_US
dc.rightsFinal published version. This is an open access article.en_US
dc.titleAccelerating Stochastic Composition Optimizationen_US
dc.typeJournal Articleen_US
dc.identifier.eissn1533-7928-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
OA_StochasticCompositionOptimization.pdf580.51 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.