Proof of a conjecture of Bowlin and Brin on four-colouring triangulations
Author(s): Seymour, Paul D.
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr10t17
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Seymour, Paul D. | - |
dc.date.accessioned | 2018-07-20T15:09:07Z | - |
dc.date.available | 2018-07-20T15:09:07Z | - |
dc.date.issued | 2014-05 | en_US |
dc.identifier.citation | Seymour, Paul. (2014). Proof of a conjecture of Bowlin and Brin on four-colouring triangulations. EUROPEAN JOURNAL OF COMBINATORICS, 38 (79 - 82. doi:10.1016/j.ejc.2013.11.005 | en_US |
dc.identifier.issn | 0195-6698 | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr10t17 | - |
dc.description.abstract | We prove a conjecture of Bowlin and Brin that for all n >= 5, the n-vertex biwheel is the planar triangulation with n vertices admitting the largest number of four-colourings. (C) 2013 Elsevier Ltd. All rights reserved. | en_US |
dc.format.extent | 79 - 82 | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | EUROPEAN JOURNAL OF COMBINATORICS | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | Proof of a conjecture of Bowlin and Brin on four-colouring triangulations | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.1016/j.ejc.2013.11.005 | - |
dc.date.eissued | 2013-12-05 | en_US |
dc.identifier.eissn | 1095-9971 | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Proof_of_a_conjecture.pdf | 75.18 kB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.