Nonlinear maximum principles for dissipative linear nonlocal operators and applications
Author(s): Constantin, Peter; Vicol, Vlad C.
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr10s8r
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Constantin, Peter | - |
dc.contributor.author | Vicol, Vlad C. | - |
dc.date.accessioned | 2017-11-21T19:19:50Z | - |
dc.date.available | 2017-11-21T19:19:50Z | - |
dc.date.issued | 2012-10 | en_US |
dc.identifier.citation | Constantin, Peter, Vicol, Vlad. (2012). Nonlinear maximum principles for dissipative linear nonlocal operators and applications. GEOMETRIC AND FUNCTIONAL ANALYSIS, 22 (1289 - 1321. doi:10.1007/s00039-012-0172-9 | en_US |
dc.identifier.issn | 1016-443X | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr10s8r | - |
dc.description.abstract | We obtain a family of nonlinear maximum principles for linear dissipa- tive nonlocal operators, that are general, robust, and versatile. We use these nonlinear bounds to provide transparent proofs of global regularity for critical SQG and critical d-dimensional Burgers equations. In addition we give applications of the nonlinear maximum principle to the global regularity of a slightly dissipative anti-symmetric perturbation of 2D incompressible Euler equations and generalized fractional dissi- pative 2D Boussinesq equations. | en_US |
dc.format.extent | 1289 - 1321 | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | GEOMETRIC AND FUNCTIONAL ANALYSIS | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | Nonlinear maximum principles for dissipative linear nonlocal operators and applications | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.1007/s00039-012-0172-9 | - |
dc.date.eissued | 2012-08-31 | en_US |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
1110.0179v1.pdf | 277.86 kB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.