Skip to main content

Inference from the small scales of cosmic shear with current and future Dark Energy Survey data

Author(s): MacCrann, N; Aleksic, J; Amara, A; Bridle, SL; Bruderer, C; et al

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr10r9m37x
Abstract: Cosmic shear is sensitive to fluctuations in the cosmological matter density field, including on small physical scales, where matter clustering is affected by baryonic physics in galaxies and galaxy clusters, such as star formation, supernovae feedback, and active galactic nuclei feedback. While muddying any cosmological information that is contained in small-scale cosmic shear measurements, this does mean that cosmic shear has the potential to constrain baryonic physics and galaxy formation. We perform an analysis of the Dark Energy Survey (DES) Science Verification (SV) cosmic shear measurements, now extended to smaller scales, and using the Mead et al. (2015) halo model to account for baryonic feedback. While the SV data has limited statistical power, we demonstrate using a simulated likelihood analysis that the final DES data will have the statistical power to differentiate among baryonic feedback scenarios. We also explore some of the difficulties in interpreting the small scales in cosmic shear measurements, presenting estimates of the size of several other systematic effects that make inference from small scales difficult, including uncertainty in the modelling of intrinsic alignment on non-linear scales, ‘ lensing bias ‘, and shape measurement selection effects. For the latter two, we make use of novel image simulations. While future cosmic shear data sets have the statistical power to constrain baryonic feedback scenarios, there are several systematic effects that require improved treatments, in order to make robust conclusions about baryonic feedback.
Publication Date: Mar-2017
Electronic Publication Date: 5-Nov-2016
Citation: MacCrann, N, Aleksic, J, Amara, A, Bridle, SL, Bruderer, C, Chang, C, Dodelson, S, Eifler, TF, Huff, EM, Huterer, D, Kacprzak, T, Refregier, A, Suchyta, E, Wechsler, RH, Zuntz, J, Abbott, TMC, Allam, S, Annis, J, Armstrong, R, Benoit-Levy, A, Brooks, D, Burke, DL, Carnero Rosell, A, Kind, M Carrasco, Carretero, J, Castander, FJ, Crocce, M, Cunha, CE, da Costa, LN, Desai, S, Diehl, HT, Dietrich, JP, Doel, P, Evrard, AE, Flaugher, B, Fosalba, P, Gerdes, DW, Goldstein, DA, Gruen, D, Gruendl, RA, Gutierrez, G, Honscheid, K, James, DJ, Jarvis, M, Krause, E, Kuehn, K, Kuropatkin, N, Lima, M, Marshall, JL, Melchior, P, Menanteau, F, Miquel, R, Plazas, AA, Romer, AK, Rykoff, ES, Sanchez, E, Scarpine, V, Sevilla-Noarbe, I, Sheldon, E, Soares-Santos, M, Swanson, MEC, Tarle, G, Thomas, D, Vikram, V, Collaboration, DES. (2017). Inference from the small scales of cosmic shear with current and future Dark Energy Survey data. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 465 (2567 - 2583. doi:10.1093/mnras/stw2849
DOI: doi:10.1093/mnras/stw2849
ISSN: 0035-8711
EISSN: 1365-2966
Pages: 2567 - 2583
Type of Material: Journal Article
Journal/Proceeding Title: MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Version: Final published version. Article is made available in OAR by the publisher's permission or policy.



Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.