Skip to main content

Knot lattice homology in L-spaces

Author(s): Ozsvath, Peter Steven; Stipsicz, Andras I.; Szabo, Zoltan

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr10h3n
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOzsvath, Peter Steven-
dc.contributor.authorStipsicz, Andras I.-
dc.contributor.authorSzabo, Zoltan-
dc.date.accessioned2018-07-20T15:09:37Z-
dc.date.available2018-07-20T15:09:37Z-
dc.date.issued2016-01en_US
dc.identifier.citationOzsvath, Peter, Stipsicz, Andras I, Szabo, Zoltan. (2016). Knot lattice homology in L-spaces. JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 25 (10.1142/S0218216516500036en_US
dc.identifier.issn0218-2165-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr10h3n-
dc.description.abstractWe show that the knot lattice homology of a knot in an L-space is chain homotopy equivalent to the knot Floer homology of the same knot (viewed these invariants as filtered chain complexes over the polynomial ring Z/2Z[U]). Suppose that G is a negative definite plumbing tree which contains a vertex w such that G - w is a union of rational graphs. Using the identification of knot homologies we show that for such graphs the lattice homology HF-(G) is isomorphic to the Heegaard Floer homology HF-(Y-G) of the corresponding rational homology sphere Y-G.en_US
dc.language.isoen_USen_US
dc.relation.ispartofJOURNAL OF KNOT THEORY AND ITS RAMIFICATIONSen_US
dc.rightsAuthor's manuscripten_US
dc.titleKnot lattice homology in L-spacesen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1142/S0218216516500036-
dc.date.eissued2015-12-15en_US
dc.identifier.eissn1793-6527-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1207.3889v1.pdf255.04 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.