Skip to main content

Concordance homomorphisms from knot Floer homology

Author(s): Ozsvath, Peter Steven; Stipsicz, Andras I.; Szabo, Zoltan

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1098f
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOzsvath, Peter Steven-
dc.contributor.authorStipsicz, Andras I.-
dc.contributor.authorSzabo, Zoltan-
dc.date.accessioned2019-04-05T18:30:17Z-
dc.date.available2019-04-05T18:30:17Z-
dc.date.issued2017-07-31en_US
dc.identifier.citationOzsvath, Peter S, Stipsicz, Andras I., Szabo, Zoltan. (2017). Concordance homomorphisms from knot Floer homology. ADVANCES IN MATHEMATICS, 315 (366 - 426). doi:10.1016/j.aim.2017.05.017en_US
dc.identifier.issn0001-8708-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1098f-
dc.description.abstractWe modify the construction of knot Floer homology to produce a one-parameter family of homologies tHFK for knots in S-3. These invariants can be used to give homomorphisms from the smooth concordance group C to Z, giving bounds on the four-ball genus and the concordance genus of knots. We give some applications of these homomorphisms. (C) 2017 Elsevier Inc. All rights reserved.en_US
dc.format.extent366 - 426en_US
dc.language.isoen_USen_US
dc.relation.ispartofADVANCES IN MATHEMATICSen_US
dc.rightsAuthor's manuscripten_US
dc.titleConcordance homomorphisms from knot Floer homologyen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1016/j.aim.2017.05.017-
dc.date.eissued2017-06-13en_US
dc.identifier.eissn1090-2082-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1407.1795.pdf440.67 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.