SEIS: Insight’s Seismic Experiment for Internal Structure of Mars
Author(s): Lognonné, Philippe; Banerdt, William B; Giardini, Domenico; Pike, William T; Christensen, Ulrich; et al
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr10863500
Abstract: | By the end of 2018, 42 years after the landing of the two Viking seismometers on Mars, InSight will deploy onto Mars’ surface the SEIS (Seismic Experiment for Internal Structure) instrument; a six-axes seismometer equipped with both a long-period three-axes Very Broad Band (VBB) instrument and a three-axes short-period (SP) instrument. These six sensors will cover a broad range of the seismic bandwidth, from 0.01 Hz to 50 Hz, with possible extension to longer periods. Data will be transmitted in the form of three continuous VBB components at 2 sample per second (sps), an estimation of the short period energy content from the SP at 1 sps and a continuous compound VBB/SP vertical axis at 10 sps. The continuous streams will be augmented by requested event data with sample rates from 20 to 100 sps. SEIS will improve upon the existing resolution of Viking’s Mars seismic monitoring by a factor of ∼2500 at 1 Hz and ∼200000 at 0.1 Hz. An additional major improvement is that, contrary to Viking, the seismometers will be deployed via a robotic arm directly onto Mars’ surface and will be protected against temperature and wind by highly efficient thermal and wind shielding. Based on existing knowledge of Mars, it is reasonable to infer a moment magnitude detection threshold of 𝑀𝑤∼3 at 40∘ epicentral distance and a potential to detect several tens of quakes and about five impacts per year. In this paper, we first describe the science goals of the experiment and the rationale used to define its requirements. We then provide a detailed description of the hardware, from the sensors to the deployment system and associated performance, including transfer functions of the seismic sensors and temperature sensors. We conclude by describing the experiment ground segment, including data processing services, outreach and education networks and provide a description of the format to be used for future data distribution. |
Publication Date: | 28-Jan-2019 |
Citation: | Lognonné, Philippe, William B. Banerdt, Domenico Giardini, William T. Pike, Ulrich Christensen, Philippe Laudet, S. De Raucourt et al. "SEIS: Insight’s seismic experiment for internal structure of Mars." Space Science Reviews 215 (2019). doi:10.1007/s11214-018-0574-6. |
DOI: | doi:10.1007/s11214-018-0574-6 |
ISSN: | 0038-6308 |
EISSN: | 1572-9672 |
Language: | eng |
Type of Material: | Journal Article |
Journal/Proceeding Title: | Space Science Reviews |
Version: | Final published version. This is an open access article. |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.