Skip to main content

Martingale optimal transport in the Skorokhod space

Author(s): Dolinsky, Y; Soner, H Mete

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1058x
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDolinsky, Y-
dc.contributor.authorSoner, H Mete-
dc.date.accessioned2021-10-11T14:18:04Z-
dc.date.available2021-10-11T14:18:04Z-
dc.date.issued2015-07-30en_US
dc.identifier.citationDolinsky, Y, Soner, HM. (2015). Martingale optimal transport in the Skorokhod space. Stochastic Processes and their Applications, 125 (10), 3893 - 3931. doi:10.1016/j.spa.2015.05.009en_US
dc.identifier.issn0304-4149-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1058x-
dc.description.abstract© 2015 Elsevier B.V. All rights reserved. The dual representation of the martingale optimal transport problem in the Skorokhod space of multi dimensional cádlág processes is proved. The dual is a minimization problem with constraints involving stochastic integrals and is similar to the Kantorovich dual of the standard optimal transport problem. The constraints are required to hold for every path in the Skorokhod space. This problem has the financial interpretation as the robust hedging of path dependent European options.en_US
dc.format.extent3893 - 3931en_US
dc.language.isoen_USen_US
dc.relation.ispartofStochastic Processes and their Applicationsen_US
dc.rightsAuthor's manuscripten_US
dc.titleMartingale optimal transport in the Skorokhod spaceen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1016/j.spa.2015.05.009-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
Martingale optimal transport in the Skorokhod space.pdf414.47 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.