Skip to main content

The Buffer Zone of the Quasi-Biennial Oscillation

Author(s): Match, Aaron; Fueglistaler, Stephan

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr10000038
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMatch, Aaron-
dc.contributor.authorFueglistaler, Stephan-
dc.date.accessioned2022-01-25T14:58:25Z-
dc.date.available2022-01-25T14:58:25Z-
dc.identifier.citationMatch, Aaron, and Stephan Fueglistaler. "The buffer zone of the quasi-biennial oscillation." Journal of the Atmospheric Sciences 76, no. 11 (2019): 3553-3567. DOI: 10.1175/JAS-D-19-0151.1.en_US
dc.identifier.issn0022-4928-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr10000038-
dc.descriptionRelated Item includes supplemental figures.en_US
dc.description.abstractThe quasi-biennial oscillation (QBO) is a descending pattern of winds in the stratosphere that vanishes near the top of the tropical tropopause layer, even though the vertically propagating waves that drive the QBO are thought to originate in the troposphere several kilometers below. The region where there is low QBO power despite sufficient vertically propagating wave activity to drive a QBO is known as the buffer zone. Classical one-dimensional models of the QBO are ill suited to represent buffer zone dynamics because they enforce the attenuation of the QBO via a zero-wind lower boundary condition. The formation of the buffer zone is investigated by analyzing momentum budgets in the reanalyses MERRA-2 and ERA-Interim. The buffer zone must be formed by weak wave-driven acceleration and/or cancellation of the wave-driven acceleration. This paper shows that in MERRA-2 weak wave-driven acceleration is insufficient to form the buffer zone, so cancellation of the wave-driven acceleration must play a role. The cancellation results from damping of angular momentum anomalies, primarily due to horizontal mean and horizontal eddy momentum flux divergence, with secondary contributions from the Coriolis torque and vertical mean momentum flux divergence. The importance of the damping terms highlights the role of the buffer zone as the mediator of angular momentum exchange between the QBO domain and the far field. Some far-field angular momentum anomalies reach the solid Earth, leading to the well-documented lagged correlation between the QBO and the length of day.en_US
dc.format.extent3553 - 3567en_US
dc.language.isoen_USen_US
dc.relationhttps://ams.silverchair-cdn.com/ams/content_public/journal/jas/76/11/10.1175_jas-d-19-0151.1/1/10_1175_jas-d-19-0151_s1.pdf?Expires=1597947847&Signature=Ne66gY7ckcPYla6Qa1xifcbdjCrSNtzzvzNmkdKgMd1WlxAM1y8ziWz3X8an5iyiefyC08bOHbQrU2vCvfUKAQYlHQmC-jk6JKs1SJ9lOtXOZXwi4sbRWda24iWdm6AiQuldVsi0i5OZXuvHrigFtWUOk39YIfkzEvHqxzV9X47NaRgz3feR9QP-t3y-xqek5hoApJKaBrKtoT23Go4lJEV-ry4rob5MGvoq~MtP1aPH4tU0yqBTatEBCjFbmOv3jAAbtZGwpeQVRU3u7mFoV8RIOEAXpaY0TMs-HCkBElOzhsrF2YonkXUY2Pg3OzcZRpLzYXi5dMteqBOM1ClOvQ__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGAen_US
dc.relation.ispartofJournal of the Atmospheric Sciencesen_US
dc.rightsFinal published version. Article is made available in OAR by the publisher's permission or policy.en_US
dc.titleThe Buffer Zone of the Quasi-Biennial Oscillationen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1175/JAS-D-19-0151.1-
dc.date.eissued2019-11-05en_US
dc.identifier.eissn1520-0469-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
The_Buffer_Zone_Quasi-Biennial_Oscillation.pdf2.44 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.