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Summary

� Savanna vegetation is variable, and predicting how water, nutrients, and chronic distur-

bances interact to determine vegetation structure in savannas represents a challenge.
� Here, we examined in situ interactions among rainfall, soils, grasses, fire, and elephants that

determine tree layer responses to resource gradients in Kruger National Park in South Africa,

using 363 long-term monitoring sites throughout the park.
� Grass biomass increased with rainfall and on nutrient-rich clay soils. Fire frequency, too,

increased with rainfall. Conversely, tree density was greater on sandier soils, where water infil-

trates more readily, and in areas where the maximum interval between fires was longer, irre-

spective of average fire frequency. Elephant density responded positively to tree density, but

did not contribute significantly to decreasing tree density.
� Savanna vegetation structure was reasonably predictable, via a combination of rainfall (fa-

voring grasses), soil (sandy soils favoring trees), and fire (limiting trees until a longer interval

between fires allows them to establish). Explicit consideration of bottom-up and top-down

interactions may thus contribute to a predictive understanding of savanna vegetation hetero-

geneity.

Introduction

Savanna, a biome defined by the co-dominance of trees and
grasses, is characterized by its large variability in tree cover
(Sankaran et al., 2005; Bucini & Hanan, 2007; Bond, 2008) and
grass biomass (Balfour & Howison, 2002; Govender et al.,
2006). A predictive understanding of the processes that give rise
to such variability is an ongoing challenge that depends on resolv-
ing the fundamental roles of resource availability but also chronic
disturbances by fire and herbivory in determining the distribu-
tion of the biome and vegetation structure within it (Scholes &
Archer, 1997; Bond, 2008). Historically, savanna ecology has
focused on resolving whether bottom-up (water, soils and nutri-
ents) or top-down processes (fire and herbivory) are primarily
responsible for extant variation in vegetation structure (Scholes
& Archer, 1997; Bond, 2008). However, recognition that these
processes interact is growing, and a predictive understanding of
savanna variation will depend on integrating bottom-up and top-
down perspectives in savanna ecology (Sankaran et al., 2004,
2005, 2008; Bucini & Hanan, 2007).

On the one hand, trees and grasses may coexist because they
source soil resources from different soil layers. Resource limita-
tion certainly is responsible for limiting tree cover in many, if not
all, savannas (Sankaran et al., 2005). In theory, grasses root in
shallow soil layers and use surface water and nutrients, while trees
root deeper and use deeper water (Walter, 1971); these predic-
tions are borne out in some recent empirical work in savannas

(Seghieri, 1995; Bhattachan et al., 2012; Kulmatiski & Beard,
2012). However, trees do not always root more deeply than
grasses (Seghieri, 1995; February & Higgins, 2010; O’Donnell
et al., 2015), such that root-niche separation does not provide a
ubiquitous mechanism to maintain tree�grass coexistence.
Moreover, models have suggested that, even when trees and
grasses root separately, they may still compete, because water in
deep soil layers first passes through shallow layers where grasses
have access (Holdo, 2013). Experiments show that grasses often
out-compete trees for water (Riginos, 2009; February et al.,
2013) and nutrients (Cech et al., 2008; Cramer et al., 2010)
under average ecological conditions.

Temporal responses to water and nutrient availability provide
another possible axis of differentiation between trees and grasses.
In some systems, trees seem to respond more slowly than grasses
to rainfall arrival within a season (Rodriguez-Iturbe, 2000; Laio
et al., 2001; Scanlon et al., 2005). However, in others, trees green
up in advance of rainfall arrival and thus respond more quickly
to rainfall arrival than grasses do (Archibald & Scholes, 2007;
Ryan et al., 2016). Soil texture may also mediate this process, by
influencing the availability of water at different times of year
(Fensham et al., 2015). Thus, in theory, temporal niche differen-
tiation may also contribute to determining tree�grass coexistence
(Scanlon et al., 2005).

An alternative dominant perspective suggests that tree�grass
coexistence is maintained not by resources but by chronic distur-
bances, especially from fire (Higgins et al., 2000; Bond et al.,
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2005) and herbivory (Baxter & Getz, 2005; Staver et al., 2009;
Staver & Bond, 2014). Controlled fire experiments have demon-
strated repeatedly that, by suppressing the maturation of saplings
into adult trees, fire strongly impacts vegetation structure in
savanna (Brookman-Amissah et al., 1980; Moreira & Klink,
2000; Higgins et al., 2007), and global-scale analyses have sug-
gested that fire is largely responsible for the extensive distribution
especially of mesic savannas (Bond et al., 2005; Staver et al.,
2011a,b). Modeling work has shown that fire – especially vari-
ability in fire through time – does provide a plausible mechanism
to maintain the coexistence of trees and grasses (Higgins et al.,
2000). Moreover, although periodic fire experiments have shown
that fire frequency can affect tree density and cover (Higgins
et al., 2007), long periods between fires, even where fires are fre-
quent on average, may allow trees to emerge in variable savanna
landscapes (Higgins et al., 2000; Wakeling et al., 2011).

Meanwhile, herbivore exclusion experiments generally show a
qualitatively similar effect to that of fire (Staver & Bond, 2014):
wherever grazers and browsers are excluded from savanna, trees
respond with increased growth (Staver et al., 2009; Sankaran
et al., 2013; but see Holdo et al., 2009). Elephants in particular
can have dramatic effects on vegetation by toppling large trees
(Asner et al., 2009). Formal theoretical evaluations and large-
scale syntheses of the role of herbivory in maintaining tree�grass
coexistence are mostly lacking, however.

Understanding how these processes combine and interact in
real savanna landscapes presents the major challenge moving for-
ward in savanna ecology. Continental-scale analyses suggest that
tree cover generally increases with rainfall (Sankaran et al., 2005;
Bucini & Hanan, 2007; Good & Caylor, 2011; Staver et al.,
2011a,b; Lehmann et al., 2014), and varies to some extent with
fire frequency even within savanna (Sankaran et al., 2008;
Lehmann et al., 2014). But grass biomass and fire frequency also
appear to increase with increasing rainfall (Higgins et al., 2000;
Govender et al., 2006; Archibald et al., 2009), with concomitant
effects on the tree layer (Bhattachan et al., 2012; Tomlinson
et al., 2012). These large-scale analyses have documented broad
patterns, but have been unable to constrain the variation in vege-
tation structure within and across savannas to a satisfying degree.
Savannas may simply experience more unexplainable variation
than other systems, especially at small scales (Scanlon et al.,
2007). Alternatively, we may hitherto have lacked the type and
quality of data necessary to disentangle the interactive effects of
rainfall, fire, herbivory, and especially soils on savanna vegeta-
tion.

Here, we have directly addressed the combination of these fac-
tors to examine how they determine vegetation structure in
Kruger National Park in South Africa (Kruger). The geography
of Kruger represents a natural experiment: it spans significant gra-
dients in rainfall on soils from two contrasting geologic parent
materials. Together with its unparalleled spatially extensive data
sets of grass biomass, fire history, herbivore populations, and tree
density, this natural experiment makes Kruger an ideal setting to
ask how system-level interactions produce emergent patterns of
vegetation responses to climatic and edaphic variability. One of
the great strengths of Kruger’s monitoring effort is that data sets

include information on size-structured tree density, not just on
ecosystem-level metrics such as tree cover or biomass, which are
usually the focus of large-scale analysis (Bucini & Lambin, 2002;
Sankaran et al., 2005, 2008; Staver et al., 2011a,b; Lehmann
et al., 2014). Another strength is a long record of herbaceous
layer monitoring, which is also lacking from all existing large-
scale analysis. These elements may provide additional insights
into constraints from fire and herbivory, both of which are prin-
cipally demographic and vary by tree size (Trollope & Tainton,
1986; Hanan et al., 2008; Moncrieff et al., 2011; Staver & Bond,
2014). Thus, we examined interactions between all components
of the savanna system for insights into how bottom-up and top-
down processes interact to determine vegetation heterogeneity in
savannas.

Materials and Methods

Study area

Kruger covers nearly 20 000 km2 (22°200 to 25°300S; 31°100 to
32°000E) in low-elevation areas (260–839 m; the ‘lowveld’) of
northeastern South Africa. It is dominated by two underlying
parent materials, a granite and a basalt, broadly characterized as
nutrient poor and nutrient rich, respectively (Venter, 1990).
Mean annual rainfall ranges from 450 mm in the north to
750 mm in the south, although inter-annual variation is signifi-
cant. The flora of Kruger includes > 400 species of tree and shrub
and > 200 species of grass (Venter, 1990). Dominant tree fami-
lies include the Fabaceae (including Colophospermum mopane and
species of Acacia; Kirk ex J.L�eonard) and the Combretaceae (in-
cluding species of Combretum and Terminalia).

Fire is a major ecological feature of the park; the average fire
return interval is c. 3.5 yr, but fire regimes vary locally, ranging
from one fire per year to one every 34 yr (Van Wilgen et al.,
2004; Govender et al., 2006). The time-scale of fire observation
in the park has spanned conspicuous shifts in fire management
policy in the park, but direct evaluations have found that policy-
level interventions have been largely ineffective in changing fire
regimes, at least at relatively large spatial and temporal scales,
which instead have responded more directly to variation in grass
biomass, arising from variation in rainfall (Van Wilgen et al.,
2004, 2008; Govender et al., 2006).

The park is host to a diverse assemblage of African mammals.
Impala (Aepyceros melampus) are by far the most numerous herbi-
vore in the park (6.4 km�2 or 380 kg km�2), while elephant
(Loxondonta africana) make up the largest biomass (0.7 km�2 or
1900 kg km�2). Herbivore biomass totals c. 6080 kg km�2. Spa-
tially explicit herbivore population data are not available for any-
thing besides elephants, but anecdotal evidence suggests that
herbivore impacts on vegetation vary substantially.

Data on grass biomass, tree populations, rainfall, fire, and
soils

Kruger management established 533 Veld Condition Assessment
(VCA) sites throughout the park in 1989 to monitor grass
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biomass to inform fire management. Of these, grass was consis-
tently monitored on 363 sites (see Supporting Information
Fig. S1a). Because informing fire management was the primary
goal, sites were located mostly in areas where herbivore impacts
are relatively mild (i.e. sites were not located in areas dominated
by grazing lawns, such as sodic sites and areas near rivers, where
fires are rare). Grass biomass was measured every year in April
from 1989 to 2008 in plots of 50 m9 60 m with a calibrated disc
pasture meter. Measurements to derive plot-level grass biomass
estimates were taken every 2 m along four 50-m transects,
running at 0, 20, 40 and 60 m along the length of the plot.

A one-time tree census was added to monitoring efforts in
2008 at 222 sites. Tree data were collected at selected points
along the same transects where grass data were collected: 30 m
and 50 m along the first and third transects (which were located
at 0 m and 40 m along the length of the plot), and 20 m and
40 m along the second and fourth transects (located at 20 m and
60 m along the length of the plot). Trees were recorded by size
structure: the species and height of each tree were recorded (1)
within 1 m of the sampling point for woody plants with a height
of ≤ 1 m, (2) within 2 m of the sampling point for woody plants
with a height > 1 m and ≤ 3 m, and (3) within 5 m of the sam-
pling point for woody plants with a height of > 3 m. Canopy size
was also recorded for trees with height > 3 m. This plot design
corrects for rarity of larger trees in savanna systems but still pro-
vides a quantifiable estimate of tree density and tree population
structure. Densities were calculated using two size classes –
saplings with height ≤ 3 m and trees with height > 3 m – but for
direct comparison with remote-sensing-based tree cover estimates
(from the MODIS satellite), tree cover was calculated as the per
cent aerial canopy cover only of trees larger than 5 m tall.

Rainfall data were collected by Kruger management at a
separate network of 22 sites throughout the park since 1989
and were interpolated to produce rainfall distribution maps
(Fig. S1b). Kruger also keeps records of the spatial distribu-
tion of fires throughout the park, whether set by management
or accidental (Fig. S1c); older records were kept by hand and
have been digitized, while more recent ones were based on
fire-scar mapping from MODIS satellite-derived data (accurate
to 250 m). Thus, a continuous record is available dating from
1945 until 2008, although for this study only data that over-
lapped with the temporal extent of grass biomass monitoring
(i.e. 1989–2008) were used. Spatially explicit elephant popula-
tion data are available from annual fixed-wing aerial popula-
tion censuses maintained by the park from 1985 to 2012,
which were used to estimate time-averaged elephant density
estimates (Fig. S1d). Average annual rainfall, fire, elephant
density, and parent material data for each site were extracted
from spatially explicit records in R v.2.8.1 (R Core Team,
2015).

Soil samples were collected to a depth of 20 cm at a subset of
58 of the most easily accessible sites (37 on granitic parent mate-
rial and 21 on basaltic; Fig. S1b) during the rainy seasons of 2010
and 2011. Samples were collected at each of the corners and in
the middle of the 509 60 m plots for a total of five samples per
site, then homogenized and subsampled. Samples were dried at

60°C for 4 d, sieved at 2 mm, and then ground. Total soil carbon
(C) and nitrogen (N) were analyzed via combustion on an NC
2500 Elemental Analyzer at Princeton University (detection limit
c. 0.02% by weight; Carlo Erba Elantech, Lakewood, NJ, USA).
Total soil phosphorus (P) was analyzed via nitric acid/hydrogen
peroxide closed vessel microwave digestion at the University of
California at Davis Soils Analytical Lab (ICP-AES; detection
limit c. 0.001% by weight) (Sah & Miller, 1992; Kulmatiski &
Beard, 2012). Soil texture was estimated by dispersion of soil
aggregates using a 50 g l�1 sodium hexametaphosphate (SHMP)
solution and subsequent measurement based on changes in sus-
pension density via a hydrometer (ASTM 152H (H-B Instru-
ments, Trappe, PA, USA); detection limit of c. 1% sand, silt and
clay) (Sheldrick & Wang, 1993). Soil sand, clay and silt content
add up to 100%; sand content was therefore perfectly anti-
correlated with clay + silt, and we have used only the former in
statistical analysis.

Comparison with remote sensing data

To evaluate the scope of Kruger’s rainfall gradient with continen-
tal variation in rainfall, we compared Kruger tree cover directly
with tree cover estimates from the Landsat satellite (30 m resolu-
tion in the year 2000) (Hansen et al., 2013) and from MODIS
Vegetation Continuous Fields Collection 5 (500 m resolution in
the year 2000) (Hansen et al., 2002, 2003). Mean annual rainfall
estimates were derived from the Tropical Rainfall Measuring
Mission (TRMM) 3B42 Daily gridded rainfall product, available
at a 0.25° resolution (Nicholson et al., 2003). Tree cover layers
were re-projected to a Lambers equal area projection with a
259 25 km resolution using bilinear interpolation to match the
resolution of the TRMM rainfall data. We restricted our analysis
to savannas in continental sub-Saharan Africa, and masked areas
with winter rainfall (where vegetation would have a qualitatively
different relationship with rainfall) and areas with > 10% crop-
land, swampland, water bodies, or urban areas using Global Land
Cover 2000 (Bartholom�e & Belward, 2005).

Data analysis

All statistical analyses were performed in R v.2.8.1. We modeled
interactions between rainfall, geologic substrate, soil properties,
grass, fire regimes, and the tree layer via structural equation mod-
eling using the ‘sem’, ‘lavaan’, and ‘sesem’ packages. We defined
plausible candidate models via local estimation (Grace et al.,
2007, 2010); variables were always included when they were sig-
nificant at P < 0.05. Alternative candidate models were con-
structed to compare covarying independent variables (see
Table S1) and to evaluate variables that were locally significant at
the level of P < 0.1, to liberally include potential drivers. We then
selected the best model at each scale by selecting the model with
DAIC ≥ 2 compared with the next best model (where DAIC is
the change in the Akaike Information Criterion) (Table 1)
(Bolker, 2008). Where no single model was considered the best
model, we selected the simplest model with DAIC < 2 more than
the model with the minimum AIC. We compared spatial SEM
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results in the package ‘sesem’ (Lamb et al., 2014) with traditional
nonspatial models to determine whether accounting for spatial
autocorrelation was important (Figs S2, S3).

Results

Spatially explicit structural equation modeling revealed that
nonspatial models were preferred to models that explicitly
accounted for spatial distributions (Fig. S2). Moreover, few
variables showed any improvement in the strength of predic-
tive relationships with increasing distance lag (Fig. S3). Analy-
ses are thus presented hereafter for nonspatial structural
equation models.

Soils

Granitic and basaltic parent materials were characterized by
distinct soil texture; soil sand content (= 1� (clay + silt con-
tent)) was significantly higher on granite than on basalt parent
materials (Table 1; Figs 1, 2a). Higher sand content was in
turn linearly associated with lower soil C, N, and P (Table 1;
Figs 1, 2b–d), probably in direct response to nutrient reten-
tion by clay and silt.

Grass biomass

Grass biomass increased with mean annual rainfall and decreased
with soil sand content (Table 1; Figs 1, 3a). Increasing rainfall
clearly favored grass biomass accumulation; responses to soil tex-
ture indicate a grass biomass response either to water availability
(if clay-rich soils retain moisture in surface layers; Holdo, 2013)
or to nutrient availability (as clay-rich soils retain soil nutrients),
although structural equation modeling indicates a more direct
relationship between soil texture and grass biomass than with soil
nutrients.

Fire

Fire increased in frequency most directly with increasing rain-
fall (Table 1; Figs 1, 3b), presumably reflecting a response to
increased grass biomass accumulation rates, although the
response of fire frequency to rainfall was more direct. An
interaction with grazing by herbivores other than elephants
(usually considered to be more intense on nutrient- and clay-
rich basaltic soils; Redfern et al., 2006) may prevent fire fre-
quency from increasing in response to grass biomass on nutri-
ent-rich basalts.

Table 1 Results of nonspatial structural equation modeling examining relationships among savanna components in Kruger National Park, South Africa

Model structure DAIC P from v2

Sand ~ geology Grass ~ rain + sand Saplings ~ rain +max 6.8 0.04
P ~ sand + rain Fire ~ rain Tree density ~ sand +max + elephants
C ~ sand Max ~ fire Tree cover ~ tree density
N ~ sand Elephants ~ tree dens

Sand ~ geology Grass ~ rain + sand Saplings ~ rain +max 35.3 < 0.01
P ~ sand + rain Fire ~ grass Tree density ~ sand +max + elephants
C ~ sand Max ~ fire Tree cover ~ tree density
N ~ sand Elephants ~ tree dens

Sand ~ geology Grass ~ rain + sand Saplings ~ rain +max 0.8 0.03
P ~ sand + rain Fire ~ rain Tree density ~ sand +max
C ~ sand Max ~ fire Tree cover ~ tree density
N ~ sand Elephants ~ tree dens

Sand ~ geology Grass ~ rain + sand Saplings ~ rain 4.7 0.01
P ~ sand + rain Fire ~ rain Tree density ~ sand +max
C ~ sand Max ~ fire Tree cover ~ tree density
N ~ sand Elephants ~ tree density

Sand ~ geology Grass ~ rain + sand Saplings ~max 0.0 0.03
P ~ sand + rain Fire ~ rain Tree density ~ sand +max
C ~ sand Max ~ fire Tree cover ~ tree density
N ~ sand Elephants ~ tree dens

Sand ~ geology Grass ~ rain + sand Saplings ~ 1 17.8 0.02
P ~ sand + rain Fire ~ rain Tree density ~ sand +max
C ~ sand Max ~ fire Tree cover ~ tree density
N ~ sand Elephants ~ tree dens

Sand ~ geology Grass ~ rain + sand Saplings ~ rain +max 32.0 0.07
P ~ sand + rain Fire ~ rain Tree density ~ sand +max
C ~ sand Max ~ 1 Tree cover ~ tree density
N ~ sand Elephants ~ tree density

Candidate models were constructed via a combination of linear modeling of each component separately. In each case, differences from previous models
are underlined for emphasis. Geology, geologic substrate; rain, annual rainfall; sand, soil per cent sand; P, soil per cent phosphorus; C, soil per cent carbon;
N, soil per cent nitrogen; grass, grass biomass; fire, fire frequency; max, maximum inter-fire interval; elephants, elephant density; sapling, sapling density;
tree cover, per cent tree cover. We selected the model with DAIC < 2 more than the ‘best’ model; in this case, the simplest model was the best model.
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By contrast, the maximum interval between successive fires
was much less predictable, although fire frequency did weakly
constrain the maximum time between fires (Table 1; Fig. 1).
Unexplained variability in the maximum inter-fire interval sug-
gests a role for stochasticity in fire spread and possibly even fire
management (although Kruger management attempted to imple-
ment a regular 3-yr fire return interval throughout the park for
most of its documented history; Van Wilgen et al., 2004) in
shaping fire regimes.

Tree density

Sapling density (of trees with height ≤ 3 m) was not very pre-
dictable (Table 1; Fig. 1). Maximum inter-fire interval was the
preferred predictor of variation in sapling density, and sapling
density decreased with more time between fires (Fig. 4). How-
ever, sapling density was not predictable compared with other
components of the Kruger savanna system.

Large-tree density (of trees with height > 3 m) was quite pre-
dictable, however (Table 1; Fig. 1). The idea that elephant den-
sity and large-tree (height > 3 m) density were linked was well
supported. Higher elephant densities were associated with higher
tree density (Table 1; Figs 1, 5). However, once we had
accounted for that interaction and other determinants of tree
density, elephants had relatively minor effects on local variation
in tree density (Fig. 1).

Tree density also strongly increased with increasing soil sand
content and increasing maximum inter-fire interval (Table 1;
Figs 1, 6). The combination of soil sand fraction, maximum
inter-fire interval, and elephant density explained a substantial
degree of variation in large-tree density – 33% at the plot level.
Tree cover varied closely with large-tree density.

Meanwhile, rainfall was not a significant determinant of large-
tree density (Table 1; Figs 1, 6). This runs counter to studies at
the scale of all savannas, which have noted a strong role for
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Fig. 1 Structural equation modeling results showing probable interactions
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show statistically supported effects; line widths scale with the strength of
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fire frequency that has been widely reported but was not supported here.
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rainfall in determining maximum potential tree cover (but with
significant residual variation; Sankaran et al., 2005, 2008; Staver
et al., 2011a,b). This is probably not particularly noteworthy,
however, as Kruger’s rainfall gradient (~ 400–700 mm mean
annual rainfall) is sizeable but nonetheless minor compared with
the total range in rainfall over which savannas occur (see Fig. S4
for a comparison with the relationship between rainfall and tree
cover over sub-Saharan Africa, showing that Kruger has tree cover
and variability consistent with other savannas, but a relatively
narrow range of rainfall).

Discussion

Our results indicate: (1) that grass biomass increased directly
with rainfall and decreased with soil sand content, (2) that
higher rainfall also resulted in higher fire frequency (probably
mediated by grass biomass; Govender et al., 2006; Archibald
et al., 2009), but that the maximum interval between successive
fires was less predictable, (3) that, unlike grass biomass, large-
tree density increased with soil sandiness, probably reflecting
soil moisture water dynamics, and (4) that long periods

between fires decreased small tree density and increased large-
tree density.

Bottom-up constraints on grasses vs trees

Here, we observed a ready response of grass biomass to rainfall
and soil texture. This appears consistent with experiments show-
ing that, locally, grasses have direct access to water (Riginos,
2009; February et al., 2013; Holdo & Brocato, 2015) and nutri-
ents (Cech et al., 2008; Craine et al., 2009; Cramer et al., 2010)
because they compete more effectively for resources than trees
do. Statistical results indicate that grass biomass increases more
directly with increasing rainfall and soil clay/silt content than it
does in response to increasing soil nutrient availability. This may
simply mean that total soil N and P do not reflect available nutri-
ent concentrations, which can be difficult to define and measure.
Alternatively, soil moisture, resulting from an interaction
between rainfall and soil texture, may truly be more limiting of
grass biomass than nutrients.

However, this may be an oversimplification – tree density was
highest (and grass biomass lowest) on sandy soils, where potential
infiltration of water to deeper soil layers is greatest (see also Wil-
liams et al., 1996; Sankaran et al., 2008; Case & Staver, 2017),
which suggests that hydrology may substantially modify the
dynamics of tree�grass competition. Tree vs grass access to water
may in fact depend on rates of water infiltration to deeper soil
layers, where only trees have roots (February & Higgins, 2010;
Kulmatiski & Beard, 2012; Holdo & Nippert, 2015; Nippert &
Holdo, 2015). Although recent evidence suggests that trees do
not exclusively use deeper water than grasses (see e.g. Seghieri,
1995; February & Higgins, 2010; O’Donnell et al., 2015 for
examples of shallow-rooting trees), trees sometimes can have
deeper roots and can access deeper water than grasses (Seghieri,
1995; Bhattachan et al., 2012; Kulmatiski & Beard, 2012; Maz-
zacavallo & Kulmatiski, 2015). Infiltration might therefore alle-
viate water/nutrient limitation in the soil subsurface, thereby
promoting faster growth rates of deeper rooted trees in sandy soils
than clayey ones.

Recent work has suggested another mechanism by which soil
texture could impact tree occurrence; instead of sandy soils
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benefiting trees, it has been suggested that clay soils may induce
water stress (Colgan et al., 2012; Colgan & Asner, 2014; Fen-
sham et al., 2015). Because they are subject to much lower water
potentials under dry conditions, clay soils may prevent the accu-
mulation of large trees in savanna landscapes by inducing higher
levels of large-tree mortality compared with sandy soils (Fensham
et al., 2015). This mechanism cannot explain the much higher
grass biomass associated with clay soils, but may nonetheless con-
tribute to decreasing tree density and cover.

Positive large-tree responses to soil sand indicate that access to
water availability probably does benefit trees. However, this did
not directly translate into a positive tree density response to rain-
fall. The rainfall gradient in Kruger may simply be too short to
reflect large-scale patterns (Sankaran et al., 2005, 2008). Grass
competition may also play a role, or higher fire frequency at
higher rainfall (Govender et al., 2006; Archibald et al., 2009)
may mask the direct impacts of rainfall on trees. Thus, even if
water does directly benefit trees, this may only be apparent locally
when rainfall does not more directly benefit grasses and result in
increasing fire frequency.

Fire and tree density

The structure of the tree layer in this savanna was also lim-
ited by the fire regime, although less by fire frequency than
by consistently short intervals between fires. Large-tree density
(height > 3 m) increased as the longest period between fires
increased, while sapling density (height ≤ 3 m) decreased. This
is a novel result and makes sense – growth rates being equal,
trees probably recruit from saplings to trees during the longer
periods without fire. Trees are more vulnerable to fires when
they are small (Hoffmann, 1999); while they resprout readily
from below-ground root reserves (Hoffmann et al., 2009;
Schutz et al., 2009), fires prevent saplings from growing into
large trees. Saplings that grow faster become fire-resistant
more quickly (Wakeling et al., 2011), but a longer interval
between fires may also promote tree establishment even by
slower growing trees (Higgins et al., 2000).

Empirical evidence demonstrating that the maximum inter-fire
interval determines fire effects on trees suggests the key question:
what drives variation in time between fires in savanna? Intu-
itively, the maximum interval between fires was loosely con-
strained here by the total fire frequency, which in turn increased
with rainfall (probably mediated by increasing grass biomass
(Govender et al., 2006; Archibald et al., 2009), although local
variability, data quality or sampling season obscured this well-
established relationship here). However, the relationship between
average frequency and the maximum interval between fires was
not tightly predictive, and fire regimes were relatively variable
even though partially determined by bottom-up processes.

One possibility is that fire frequency decreases during and after
droughts, when grass biomass accumulates more slowly (Van
Wilgen et al., 2004). While trees probably do not recruit during
droughts (Fichtler et al., 2003; Brienen & Zuidema, 2006; Ther-
rell et al., 2006), they may escape the effects of fire in the years
following drought, when a lagged grass recovery (Sala et al.,

2012) prevents intense fires even though water is available. Trees
could thus potentially recruit during long fire-free intervals asso-
ciated with droughts. Alternatively, temporal variation in fire fre-
quency may be related to variations in grazer pressure, especially
related to major collapses in grazer populations resulting from
disease (Holdo et al., 2009); explosions in fire frequency with
herbivore population collapse have been observed only in the
Serengeti, however, where grazers are strongly dominant. Most
savanna herbivore communities include browsers and mixed
feeders, and thus tree establishment – rather than tree suppression
– is usually associated with reductions in herbivore populations
(Prins & van der Jeugd, 1993; Staver & Bond, 2014), so this
mechanism is probably less important in Kruger. A final possibil-
ity is that fire is stochastic. The distribution of inter-fire intervals
may be predictable, either over very long time-scales or across
sites (Schertzer et al., 2015), but the length of time between any
two fires may not be.

Unfortunately, fire experiments have uniformly been estab-
lished to examine the effects of periodic, not stochastic, fire
regimes (Brookman-Amissah et al., 1980; Moreira & Klink,
2000; Russell-Smith et al., 2003; Higgins et al., 2007), and few
areas have a reliable fire record sufficiently old to give reasonable
estimates of the maximum historical interval between successive
fires. Here, we show that, although fire frequency varied pre-
dictably with rainfall, the maximum time between fires was less
predictable. The most prominent fire effects on tree emergence
were thus uncoupled from the tight bottom-up relationship
between rainfall, grass biomass, and fire frequency.

Herbivores and tree density

Curiously, elephant and tree density were positively related at the
level of landscape spatial pattern, which obscured the negative
effects of elephants on trees that have been documented elsewhere
(Moncrieff et al., 2008; Asner et al., 2009). This probably reflects
a preference by elephants for woodier environments (Loarie et al.,
2009; Young et al., 2009). Having accounted for all other sources
of variation in tree density, elephants were a minor determinant
of tree density. This may be partially attributable to scales of
observation, however, given a long history of previous results
demonstrating impacts of elephants on trees (Pellew, 1983; Bax-
ter & Getz, 2005; Guldemond & Van Aarde, 2008); elephants
can move around substantially, such that using large-scale aerial
counts may not be helpful for evaluating their effects on plot-
scale tree heterogeneity.

Unfortunately, data were not available to consider the impacts
of smaller herbivores on the spatial heterogeneity of savanna vege-
tation, which can be substantial (Staver et al., 2009; Sankaran
et al., 2013; Staver & Bond, 2014). Nonetheless, herbivores do
represent a potential alternative (or supplementary) pathway that
may reduce tree growth, density, and cover on clay- and nutrient-
rich soils, where herbivory, especially by the diverse meso-
herbivore community found in Kruger, can be intense (Redfern
et al., 2003, 2006). Intense browsing by meso-herbivores may
thus account for some unexplained variation in tree cover, or
alternatively may be responsible for some of the reported negative
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response of large-tree density and cover to clay- and nutrient-rich
basaltic soils. This merits further direct evaluation.

Conclusions

Patterns of spatial heterogeneity in savanna suggest that vegeta-
tion structure responds to joint constraints from bottom-up and
top-down processes. On the one hand, grasses and trees
responded to rainfall and soil texture differently, consistent with
a conceptual model in which water infiltration into deeper soils
on sands promotes tree growth, while surface soil moisture,
which is higher on clay soils and in higher rainfall areas, generally
favors grasses. Water stress or more intensive herbivory on clay
soils may also contribute to decreasing tree density and cover.

Meanwhile, fire had strong effects on large-tree (height > 3 m)
density and cover; trees were denser where a long period without
fires had released suppressed saplings. Although average fire fre-
quency was tightly constrained by rainfall (probably via its effects
on grass biomass), fire was variable through time (perhaps
stochastically) such that some areas experienced a longer lull
between fires than others. Fire limitations on tree emergence were
thus partially orthogonal to the tight coupling between rainfall,
grass biomass, and fire frequency. Together, these joint con-
straints emphasize that explicit consideration of both bottom-up
and top-down processes in savannas promises a predictive under-
standing of spatial variability in savanna vegetation structure and
tree�grass interactions.
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