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Rats and Humans Can
Optimally Accumulate Evidence
for Decision-Making
Bingni W. Brunton,1,2* Matthew M. Botvinick,1,3 Carlos D. Brody1,2,4†

The gradual and noisy accumulation of evidence is a fundamental component of decision-making,
with noise playing a key role as the source of variability and errors. However, the origins of
this noise have never been determined. We developed decision-making tasks in which sensory
evidence is delivered in randomly timed pulses, and analyzed the resulting data with models
that use the richly detailed information of each trial’s pulse timing to distinguish between different
decision-making mechanisms. This analysis allowed measurement of the magnitude of noise in
the accumulator’s memory, separately from noise associated with incoming sensory evidence. In
our tasks, the accumulator’s memory was noiseless, for both rats and humans. In contrast, the addition
of new sensory evidence was the primary source of variability. We suggest our task and modeling
approach as a powerful method for revealing internal properties of decision-making processes.

Decisions in real life often need to be made
based on noisy or unreliable evidence.
Accumulating evidence from a set of

noisy observations made over time makes it pos-
sible to average over different noise samples, thus
improving estimates of the underlying signal.
This principle is the basis for the influential class

of “drift-diffusion”models (1–5), which have been
broadly applied to explain a variety of phenomena
in biology (6–8). Accumulation involves both
maintaining a memory of evidence accrued so
far and adding new evidence to the memory. Yet
no test to date has distinguished between noise
associated with each of these two components.

We developed tasks in which subjects (hu-
mans and rats) were concurrently presented with
two trains of pulses, one train representing “left”-
labeled pulses and the other, “right”-labeled pulses.
At the end of each trial, the subjects had to re-
port which of the two trains had the greater total
number of pulses. The timing of pulses was ran-
dom and varied widely, both within and across
individual trials (9, 10). We reasoned that the pre-
cisely known pulse timing would enable detailed
modeling of the subjects’ choices on each indi-
vidual trial, whereas its variability would allow
exploration of the stimulus space and would thus
provide statistical power.

In an auditory version of the task, performed
by three humans and 19 rats, left pulse trains
were clicks presented on a speaker to the left of
the subject, and right pulse trains were clicks
presented on a speaker to the right of the sub-
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Fig. 1. Psychophysical tasks and summary of behavior. (A) Sequence
of events in each trial of the rat auditory task. After light onset from a light-
emitting diode (LED) in a center port, trained rats placed their nose into the
port and “fixated” their nose there for a fixed amount of time until the light
was turned off (1 to 2 s). Trains of randomly timed clicks were played con-
currently from left and right free-field speakers during the last portion of the
fixation time. After nose fixation and sounds ended, the rat made a choice,
poking in the left or the right port to indicate which side played more clicks.
Humans performed an analogous version of the task on a computer while

wearing headphones. (B) Schematic diagram of a stimulus in the visual pulses
version of the task, performed by humans on a computer. (C) Psychometric
curves (fits to a four-parameter logistic function for each subject; see methods)
for rat subjects. (D) Psychometric curves, as in (C), for human subjects. (E)
Chronometric curves for an example rat. Difficulty is labeled by the ratio of
click rates played on the two sides. For each difficulty, performance improves
with longer stimulus durations. Dashed lines show the best-fit model predic-
tions for this rat, as described in the text. The vertical axis shows mean ac-
curacy and 95% confidence interval (CI).
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ject (Fig. 1A; free-field speakers for rats, head-
phones for humans). In a visual version of the
task, performed by four humans, left pulses were
flashed white bars, tilted anticlockwise from the
vertical, and right pulses were flashed white bars
tilted clockwise (3) (Fig. 1B). On each trial, the
stimulus was presented for a duration controlled
by the experimenter. The sum of the two pulse
rates was kept fixed within each task, and dis-
crimination difficulty was controlled on each trial
by the ratio of the two rates (Fig. 1, C to E).

To examine a large variety of possible mech-
anisms consistent with the performance improve-
ment at longer stimulus durations seen in Fig. 1E
[(11, 12); see also fig. S4], we expanded on the
drift-diffusion framework and implemented a
flexible model (Box 1) in which different regimes
of model parameter values represent widely dif-
ferent mechanisms (three examples in Fig. 2A),
with mixtures of mechanisms represented by in-
termediate parameter values.

Given a trial’s specific pulse times and a set
of parameter values, the model produces the prob-
ability of observing a left versus a right response
on that trial. Methods to compute the gradient of
this probability with respect to model parame-
ters (see the supplementary materials) were crit-
ical for efficiently finding the parameter values
that gave the maximum likelihood of observing
the complete set of a subject’s responses. Nu-
merical tests always found only one maximum
(fig. S6), suggesting that we always found the
global maximum. Consistent with this obser-
vation, a mathematically related model has been
proven to have a concave log likelihood (6), sug-
gesting that our model may also be provably
concave and have a single maximum.

Figure 2, B to D, shows the likelihood land-
scape around best-fit (i.e., maximum-likelihood)
parameters, given the data of a representative rat
subject. Confidence intervals are given by the
parameter width of the maximum (blue con-
tours). Figure 2B shows l (= 1/t, the memory
time constant), which represents accumulator
memory leak (if l < 0) or instability (if l > 0),
and B, the height of the decision-commitment
evidence bounds. l was statistically indistinguish-
able from zero. That is, the decision dynamics
were neither leaky nor unstable, suggesting that
sensory evidence from throughout the entire
stimulus period was given equal weight. The best-
fit B was large enough that it produced model
fits indistinguishable from those produced by
B = ∞. Across subjects (Fig. 2, E and H), spe-
cies, sensory modalities, and task parameters, the
accumulator’s memory time constant |t | = 1/|l|
was long (|l| = 0.91 T 0.15 s−1 mean T SE across
rats; |l| = 0.23 T 0.071 s−1 across humans), in the
sense that |t| was comparable to or greater than
the longest stimulus duration used [1 s for rats,
4 s for humans (13)]. The best-fit values of B and
l were thus in the gradual accumulation regime
(Fig. 2A, top).

In our tasks, noise in the sensory evidence
(s2s) adds total variance proportional to the sum

of the amplitude of the clicks, whereas the mem-
ory diffusion noise (s2a) adds total variance pro-
portional to the stimulus duration. This separability
allows us to isolate the magnitude of the diffu-
sion noise s2a that gives the drift-diffusion model
its name (2, 5). To our surprise, in 13 out of 19 rats
and in all three humans performing the auditory
task and all four humans performing the visual
task, the value that best fit the data was the ideal
s2a = 0 (Fig. 2C for an example subject, Fig. 2, F
and I, for all subjects). Consistent with the easily

distinguishable right versus left pulses used with
humans, the best-fitting values of sensory evi-
dence noise s2s for humans were substantially
lower than those for the rats (Fig. 2I). Again in this
much lower s2s regime, the best-fitting memory
diffusion noises2awas zero. The dominant source
of variability was thus noise in the evidence
associated with each incoming pulse (s2s = 1.90 T
0.28 pulses2 per incoming pulse for rats, 0.50 T
0.059 pulses2 in the human auditory task, and
0.24 T 0.10 pulses2 in the human visual task.)

Box 1.

At each time point, the accumulator memory a (black trace) represents an estimate of the
right versus left evidence accrued so far. At stimulus end, the model decides right if a > bias
and left otherwise, where bias is a free parameter. The light gray traces indicate alternate
runs with different instantiations of model noise.

Right ↑ (left ↓) pulses change the value of a by positive (negative) impulses of magni-
tude C.

s2i parameterizes noise in the the initial value of a.
s2a is a diffusion constant, parameterizing noise in a.
s2s parameterizes noise when adding the evidence from a right or left pulse: For each click, variance

s2s is scaled by the amplitude of C and then added to the evidence contributed by the click.
l parameterizes consistent drift in the memory a. In the “leaky” or forgetful case (l < 0,

illustrated), drift is toward a = 0, and later pulses affect the decision more than earlier pulses. In
the “unstable” or impulsive case (l > 0), drift is away from a = 0, and earlier pulses affect the
decision more than later pulses. The memory’s time constant t = 1/l.

B is the height of the sticky decision bounds and parameterizes the amount of evidence
necessary to commit to a decision.

ϕ and tϕ parameterize sensory adaptation by defining the dynamics of C. Immediately after a
click, the magnitude C is multiplied by ϕ. C then recovers toward an unadapted value of 1 with
time constant tϕ. Facilitation is thus represented by ϕ > 1, whereas depression is represented
by ϕ < 1 (inset).

These properties are implemented by the following equations
if |a| ≥ B then da/dt = 0; else

da = sadW + (dt,tR · hR · C − dt,tL · hL · C) dt + ladt (1)

where dt,tR,L are delta functions at the times of the pulses; h are i.i.d. Gaussian variables drawn
from N(1, ss); and dW is a white-noise Wiener process. The initial condition a(t = 0) is drawn from the
Gaussian N(0, si).

Adaptation dynamics are given by

dC
dt = 1 − C

tϕ
+ (ϕ − 1)C(dt,tR + dt,tL ) (2)

In addition, a lapse rate parameterizes the fraction of trials on which a random response
is made. Ideal performance (a = #right clicks − #left clicks) would be achieved by

l = 0, B = ∞, s2a = s2s = s2i = 0, ϕ = 1, bias = 0 (3)
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This variability could be introduced by sensory
uncertainty in the left-versus-right classification
of each individual pulse, or by noise in the pro-
cess of adding new sensory evidence to the ac-
cumulator memory.

The pulsatile nature of our task made it straight-
forward to parameterize sensory adaptation [(14);
Eq. 2]. We found strong, quickly-recovering de-
pression for rats (Fig. 2, D, G, and J; adapta-
tion magnitude ϕ = 0.17 T 0.021, recovery time
constant tϕ = 0.080 T 0.024 s, mean T SE across
rats). This is consistent with the depression ob-
served in auditory cortex neural responses to
click train stimuli (15, 16). Stimuli in the human
tasks were constructed with a minimum inter-
pulse interval (30 ms in the auditory task, 150 ms
in the visual task), and this greatly reduced the
adaptation effects as compared to those in rats
(Fig. 2, G and J). Across all adaptation regimes,
we found long accumulator time constants and
zero memory diffusion noise.

If our subjects’ behavior depends on a pro-
cess that cannot be approximated by the mod-
el [such as collapsing bounds (17), variability
in attention (18), or other possibilities not yet
formalized in a model], our interpretation of the
best-fit values may be problematic. We therefore
tested the model-derived conclusions. To assess
the memory time constant t, we calculated the
“psychophysical reverse correlation” (17, 19–21),
which estimates the extent to which click rates
at each point in time influence left and right
decisions. This analysis indicated that all periods
of the trial have similar influence on the deci-
sion (approximately constant separation between
the two traces in Fig. 3A), which is consistent
with the long t found in the model-based anal-
ysis. To assess our estimates of the single-pulse
noise s2s and the starting variability s2i, we fit
the model to data from trials with multiple clicks
on each of the two sides, and used those best-fit
parameters to predict performance on trials in

which only one single-side pulse happened to
be presented (for which performance is domi-
nated by s2s and s2i). The prediction was ac-
curate, even on an individual subject-by-subject
basis (Fig. 3B). To assess the memory diffusion
noise s2a, we controlled for sensory evidence
by dividing trials into groups, so that all trials
within a group had the same number of right
clicks and the same number of left clicks; as-
suming large |t|, performance within each group
is then dominated by s2a and the click depres-
sion parameters ϕ and tϕ. Large s2a would
predict decreasing within-group performance at
longer stimulus durations. The data showed the
opposite trend and was precisely predicted by
the best-fit model, where s2a = 0 and clicks are
depressing (Fig. 3C and fig. S13). The tests of
Fig. 3 thus provided model-independent confir-
mation of the model-fit parameter values.

Using highly variable yet precisely known
stimuli, together with a trial-by-trial model that

Fig. 2. The model can fit a variety of mechanisms, but the data con-
sistently fit to a pulse-accumulating mechanism with zero noise in the
accumulator’s memory. (A) Three examples of the mechanisms that the
model can represent. Top: The ideal, a pulse accumulator that weights all pulses
equally. Middle: A burst detector. If three or more pulses from the same side
arrive within 50ms, the sticky bounds are reached, meaning that a commitment
to orient to that side is made. Bottom: A precedence detector. If pulses from one
side tend to arrive shortly before pulses from the other side, the adaptation
minimizes the second side’s pulses, and the decision tends toward the preceding
side. (B to D) Parameter-likelihood landscapes that result from the data of one
example rat. Panels are two-dimensional slices, cut through the full nine-
dimensional parameter space, around the best-fit values. The blue curves
represent CIs [2 SD of the multidimensional normal distribution fit to the

likelihood landscape (28)]. The best-fit parameter values found, which are l ≈ 0,
B >> 1, s2a ≈ 0, s2s >> 0, and ϕ << 1, correspond to pulse accumulation [(A),
top] with a perfect memory but imperfect processing of sensory inputs. (E to J)
Summaries of best-fit parameters over all subjects and tasks. Black ticks are best-
fit values; gray bars span the CIs. Each panel has been divided by task (yellow
highlight for human auditory task, green highlight for human visual task) and
then sorted independently in order of parameter value. (E) All subjects, in all
tasks, had long accumulator memories. (H) Most subjects were best fit with large
bounds (B → ∞). (F) Thirteen of 19 rats and all humans in both auditory and
visual tasks were best fit with s2a = 0. (I) A wide range of values, all large
compared to s2a, were found for s

2
s. (G) and (J) All rats showed strong, rapidly

recovering depression (ϕ < 1, mean tϕ = 0.040 s). Humans showed weak
depression in the auditory task and weak facilitation in the visual task.
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uses the full information about each trial’s richly
detailed stimulus (22), is a powerful approach
for precisely quantifying multiple properties of
decision-making processes. The approach pro-
vided strong evidence that rats can indeed grad-
ually accumulate evidence for decision-making
(23–26), thus establishing that this important
cognitive phenomenon can be studied in a wide-
ly available animal model that is amenable to
a rapidly growing arsenal of molecular tools.

With its capacity to provide moment-by-moment
estimates of the temporal evolution of the ac-
cumulator, the approach will combine particu-
larly well with neurobiological measurements.
The model used for analysis can be readily ex-
panded to consider and quantify further decision-
making parameters, and the approach is easily
generalized to different species, sensory modal-
ities, and types of decision-making, including value-
based decision-making (8, 27).

References and Notes
1. R. Ratcliff, Psychol. Rev. 85, 59 (1978).
2. S. W. Link, The Wave Theory of Difference and Similarity

(Lawrence Erlbaum Associates, Mahwah, NJ, 1992).
3. M. Usher, J. L. McClelland, Psychol. Rev. 108, 550

(2001).
4. R. Bogacz, E. Brown, J. Moehlis, P. Holmes, J. D. Cohen,

Psychol. Rev. 113, 700 (2006).
5. R. Ratcliff, G. McKoon, Neural Comput. 20, 873 (2008).
6. L. Paninski, J. W. Pillow, E. P. Simoncelli, Neural Comput.

16, 2533 (2004).
7. J. I. Gold, M. N. Shadlen, Annu. Rev. Neurosci. 30, 535

(2007).
8. M. Milosavljevic, J. Malmaud, A. Huth, C. Koch, A. Rangel,

Judgm. Decis. Mak. 5, 437 (2010).
9. B. W. Brunton, C. D. Brody, paper presented at the

Annual Meeting of the Society for Neuroscience, Chicago,
IL, 18 October 2009.

10. J. I. Sanders, A. Kepecs, J. Neurophysiol. 108, 3416 (2012).
11. A. B. Watson, Vision Res. 19, 515 (1979).
12. J. Ditterich, Neural Netw. 19, 981 (2006).
13. A. C. Huk, M. N. Shadlen, J. Neurosci. 25, 10420 (2005).
14. B. Wark, B. N. Lundstrom, A. Fairhall, Curr. Opin. Neurobiol.

17, 423 (2007).
15. D. Bendor, X. Wang, Nat. Neurosci. 10, 763 (2007).
16. M. Wehr, A. M. Zador, Neuron 47, 437 (2005).
17. R. Kiani, T. D. Hanks, M. N. Shadlen, J. Neurosci. 28,

3017 (2008).
18. I. Krajbich, C. Armel, A. Rangel, Nat. Neurosci. 13, 1292

(2010).
19. P. Neri, A. J. Parker, C. Blakemore, Nature 401, 695 (1999).
20. H. Nienborg, B. G. Cumming, Nature 459, 89 (2009).
21. D. Raposo, J. P. Sheppard, P. R. Schrater, A. K. Churchland,

J. Neurosci. 32, 3726 (2012).
22. J. W. Pillow et al., Nature 454, 995 (2008).
23. N. Uchida, Z. F. Mainen, Nat. Neurosci. 6, 1224 (2003).
24. N. M. Abraham et al., Neuron 44, 865 (2004).
25. D. Rinberg, A. Koulakov, A. Gelperin, Neuron 51, 351

(2006).
26. H. Zariwala, Z. F. Mainen, thesis, Stony Brook University.

Stony Brook, NY (2007).
27. I. Krajbich, A. Rangel, Proc. Natl. Acad. Sci. U.S.A. 108,

13852 (2011).
28. D. MacKay, Information Theory, Inference, and Learning

Algorithms (Cambridge Univ. Press, Cambridge, 2003).

Acknowledgments: We thank Y. Niv for suggesting trial-by-trial
analysis; D. Buonomano for suggesting we examine sensory
adaptation; and A. Akrami, J. Erlich, C. Kopec, J. Kubanek, T. Hanks,
B. Scott, M. Shadlen, D. Tank, and M. Yartsev for comments
on the manuscript.

Supplementary Materials
www.sciencemag.org/cgi/content/full/340/6128/95/DC1
Methods
Supplementary Text
Modeling Methods

11 December 2012; accepted 1 February 2013
10.1126/science.1233912

Fig. 3. Model-independent analyses support model-fitting results. (A) Long t: psychophysical
reverse correlation for an example rat (longest quarter of trials only). For each time point in each trial,
we computed the excess pulse rate difference (right pulses/s – left pulses/s, relative to the value expected
given the random processes used to generate the trial) and then obtained an average for trials resulting in
a right (red) and an average for trials resulting in a left (green) decision. The separation between the two
indicates how strongly clicks from each time point influenced the final decision. Thick solid lines were
obtained from the rat’s responses; the thickness of the line represents the standard error. Narrow shaded
lines were predicted by the best-fit model. (B) Accurate estimates of s2s and s2i: actual performance
(fraction correct) on short-duration trials in which one side had one pulse and the other side had two
pulses (i.e., trials for which performance was dominated by s2s and s

2
i), versus performance predicted by

fitting the model to trials with multiple pulses on each of the two sides. Too few trials of the short type to
perform this analysis were presented for one of the human visual data sets and all human auditory data
sets. Solid circles are individual rats, and open diamonds are individual humans. The red cross shows the
mean and standard error across subjects. The accurate estimates of s2s and s2i suggested by the good
predictions also suggest that s2a was estimated accurately, because the sum s2s + s2i + s2a is tightly
constrained by the data (fig. S12). (C) Assessing s2a, ϕ, and tϕ: Trials were divided into groups, with
sensory evidence and sensory noise controlled by keeping the total number of right clicks and the total
number of left clicks fixed within each group. Performance within each group was then dominated by s2a,
ϕ, and tϕ. (C) shows the performance of an example rat, averaged across trial groups and relative to the
overall mean of each group, as a function of stimulus duration. The red line is the prediction from the
best-fit model, with s2a = 0.
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adaptation on gradual accumulation of evidence.
accumulator. In addition, rats gradually accumulated evidence for decision-making, with strong effects of sensory
decision-making was zero, implying that the noise is all in the processing of sensory input and not in the evidence 
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 (p. 95) adaptedet al.Brunton studied using models that take advantage of the known trial-by-trial stimulus information. 
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