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Redistribution and Social Insurance†

By Mikhail Golosov, Maxim Troshkin, and Aleh Tsyvinski*

We study optimal redistribution and insurance in a life-cycle 
economy with private idiosyncratic shocks. We characterize Pareto 
optima, show the forces determining optimal labor distortions, 
and derive closed form expressions for their limiting behavior. The 
labor distortions for high-productivity shocks are determined by 
the labor elasticity and the higher moments of the shock process; 
the labor distortions for low-productivity shocks are determined by 
the autocorrelation of the shock process, redistributive objectives, 
and past distortions. In a model calibrated using newly available 
estimates of idiosyncratic shocks, the labor distortions are U-shaped 
and the savings distortions generally increase in current earnings. 
(JEL D82, D91, H21, H23, I38, J22, J24)

We study a life-cycle economy with individuals who are ex ante heterogeneous 
in their abilities and experience idiosyncratic shocks to their skills over time. We 
derive a novel decomposition that allows us to isolate key economic forces deter-
mining the optimal labor distortions in life-cycle economies with unobservable idio-
syncratic shocks and to provide their characterization. We also compute the optimal 
labor and savings distortions in a model calibrated to match moments of the labor 
earnings process from a newly available high-quality US administrative data. The 
data allow us to estimate the higher moments of the stochastic process for skills, 
such as kurtosis, which emerge from our analysis as key parameters determining the 
properties of the optimum.

Most of our analysis focuses on characterizing the properties of the optimal labor 
distortions, or wedges, between marginal utilities of consumption and leisure. We 
show that the labor distortion in a given period is driven by two components: an 
intratemporal component that provides insurance against new shocks in that period, 
and an intertemporal component that relaxes incentive constraints and reduces the 
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costs of insurance provision against shocks in the previous periods. The intratem-
poral component depends on the elasticity of labor supply, the hazard rate of the 
current period shock conditional on past information, and the welfare gain from 
providing insurance against that shock. The intertemporal component depends on 
past distortions, a specific form of a likelihood ratio of the shock realization, and the 
marginal utility of consumption.

We characterize the behavior of each component in the tails, for high and low 
realizations of idiosyncratic shocks in the current period. Our benchmark specifi-
cation focuses on separable preferences and shocks drawn from a commonly used 
family of stochastic processes that include lognormal, mixtures of lognormals, and 
Pareto-lognormal distributions. We show that for such specifications the distortions 
in the right tail are determined by the intratemporal component and derive a sim-
ple formula for their asymptotic behavior. This behavior depends on the elastic-
ity of labor supply and the tail hazard rate of shocks and is independent of age, 
past history, or Pareto weights of the planner. The distortions in the left tail depend 
asymptotically only on the intertemporal component and are given by a formula 
that consists of the autocorrelation of the shock process, past labor distortions, and 
consumption growth rates. They depend on past history and Pareto weights and 
generally increase with age. We also explain how the degree of the progressivity of 
the labor distortions depends on the higher moments of the shock distribution, such 
as kurtosis, and extend our results to nonseparable preferences.

We then use newly available high-quality administrative data on labor earnings 
(see, Guvenen, Ozkan, and Song 2013 and Guvenen et al. 2013) and the US tax code 
to estimate the stochastic process for skills and quantify the implications for the 
optimal distortions. Similar to the earnings, the process for the shocks is highly per-
sistent and leptokurtic. The optimal labor distortions are approximately U-shaped 
as a function of current labor earnings, with the dip in the distortions around the 
level of earnings in the previous period. The optimal savings distortions generally 
increase in labor earnings. The distortions are fairly large in magnitude, especially 
in the right tail: the labor distortions approach 75 percent, while savings distortions 
approach 2 percent of gross (i.e., interest plus principal) return to savings. We pro-
vide a detailed quantitative decomposition of the labor distortions into the inter-
temporal and intratemporal components. Finally, we show that the welfare losses 
from using affine policies instead of the optimal policy are around 2 to 4 percent 
of consumption. Moreover, the optimal labor distortions differ significantly from 
those in a model with the lognormal shocks, both qualitatively and quantitatively, 
and imply higher welfare gains from nonlinear, history-dependent policies. The key 
feature of the data that drives these differences is the high kurtosis emphasized by 
Guvenen et al. (2013).

More broadly, we view the contribution of our paper as a step for the dynamic 
optimal taxation literature, using the mechanism-design approach, to connect more 
closely to applied work that studies design of social insurance programs. Eligibility 
rules for welfare programs, rates of phase out of transfers, and the degree of progres-
sivity of the statutory tax rates all introduce effective labor and savings distortions. 
The mechanism design approach provides an upper bound on welfare that can be 
achieved with such programs. We characterize labor and savings distortions in a 
model with rich and realistic processes for idiosyncratic shocks that are emphasized 
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in the empirical labor literature. These insights can be used as guidance in designing 
specific insurance programs in applied settings to maximize welfare gains.

A number of papers are related to our work. Our theoretical and quantitative 
analyses are built on the recursive approach developed in Kapička (2013) and 
Pavan, Segal, and Toikka (2014). Golosov, Kocherlakota, and Tsyvinski (2003); 
Kocherlakota (2005); Golosov and Tsyvinski (2006); Werning (2009) are some of 
the examples of the theoretical work examining different properties of the optimal 
distortions and their relationships to taxes. Our quantitative analysis is also related to 
a number of studies. Albanesi and Sleet (2006) provide a comprehensive numerical 
and theoretical study of optimal capital and labor taxes in a dynamic economy with 
i.i.d. shocks. Golosov, Tsyvinski, and Werning (2007) is a two-period numerical 
study of the determinants of the dynamic optimal taxation in the spirit of Tuomala 
(1990). Ales and Maziero (2009) numerically solve a version of a life-cycle econ-
omy with i.i.d. shocks drawn from a discrete, two-type distribution, and find that the 
labor distortions are lower earlier in life. Weinzierl (2011) and Fukushima (2010) 
numerically solve the optimal labor and savings distortions in dynamic economies. 
Conesa, Kitao, and Krueger (2009); Heathcote, Storesletten, and Violante (2014); 
and Kindermann and Krueger (2014) characterize optimal policies using rich but 
restricted tax instruments.

An important contribution of Farhi and Werning (2013) characterizes the dynam-
ics of labor distortions in life-cycle settings similar to ours. Most of their analysis 
focuses on time-series properties of labor distortions and shows that the stochastic 
process for labor distortions has autocorrelation equal to that of the shock process 
and a positive trend. In a numerical exercise they use lognormal shocks and show 
that affine taxes capture most of the welfare gains from the optimal policies. In 
contrast, our analysis focuses on how the labor distortions depend on earnings real-
ization, determining the degree of optimal progressivity of the distortions in differ-
ent parts of the earnings distribution. Our decomposition shows the main economic 
trade-offs and highlights how the hazard of the shock process plays important qual-
itative and quantitative roles in the shape of the distortions. The main insights—the 
expressions for the asymptotic behavior of distortions, the observation that redis-
tributive objectives and past history affect distortions only in the left tail, and the 
analysis of the effects of higher moments of shocks on the labor distortions—are all 
new. Our analysis is also the first attempt, to the best of our knowledge, to estimate 
the effects of higher moments using available data on earnings and the tax code. The 
main insights—the U-shaped labor distortions, their magnitudes, and large welfare 
gains from the optimal nonlinear, history dependent policies—differ substantially 
from the results that can be obtained with lognormal shocks.

The rest of the paper is organized as follows. Section I describes the environment. 
Section II provides the theoretical analysis. Section III quantitatively analyzes the 
calibrated life-cycle model. Section IV concludes.

I. Environment

We consider an economy that lasts  T + 1  periods, denoted by  t = 0,  … , T . Each 
agent’s preferences are described by a time separable utility function over consump-
tion   c  t    and labor   l   t    ,
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(1)   E  0     ∑ 
t=0

  
T

      β   t U( c  t  ,  l   t  ), 

where  β ∈ (0, 1)  is a discount factor,   E  0    is a period 0 expectation operator, and  
U :  핉  +  2   → 핉 .

In period  t = 0  , agents draw their initial type (skill),   θ 0    , from a distribu-
tion   F  0   (θ) . For  t ≥ 1  , skills follow a Markov process   F  t   (θ |  θ t−1  )  , where   θ t−1    is 
agent’s skill realization in period  t − 1.  We denote the probability density function 
by   f  t   (θ |  θ t−1  ).  For parts of the analysis it will be convenient to assume that people 
retire at some period   T ˆ  ,  in which case   F  t   (0 | θ)  = 1  for all  θ  and all  t ≥  T ˆ  .  Skills 
are nonnegative:   θ t   ∈ Θ =  핉 +    for all  t.  The set of possible histories up to period  
t  is denoted by   Θ   t  .

ASSUMPTION 1: For all  t <  T ˆ    , density   f  t    is differentiable in both arguments 

with   f  t  ′   ≡   ∂  f  t   _ ∂ θ    and   f  2, t   ≡   ∂  f  t   _ ∂  θ t−1  
   .  For all   θ t−1  ,    φ t   (θ |  θ t−1  )  ≡   

 θ t−1    ∫ θ  
∞    f  2, t   (x |  θ t−1  )  dx

  ____________  
θ  f  t   (θ |  θ t−1  ) 

    is 

bounded for all  θ  and    lim  θ→∞        1 −  F  t   (θ |  θ t−1  )  _ 
θ  f  t   (θ |  θ t−1  ) 

    is finite.

The function   φ t    defined in this assumption is bounded for many commonly used 
stochastic processes; for AR(1) lognormal shocks it is equal to the autocorrelation 
of the shock process for all  θ. 

An agent of type   θ t    who supplies   l    t    units of labor produces   y  t   =  θ t    l    t    units of 
output. The skill shocks are privately observed by the agent. Output   y  t    and consump-
tion   c  t    are publicly observed. In period  t  , the agent knows his skill realization only 
for the first  t  periods   θ   t  = ( θ 0   ,  … ,  θ t  ) . Denote by   c  t   ( θ   t )  :  Θ   t  →  핉 +    the agent’s 
allocation of consumption and by   y  t   ( θ   t )  :   Θ   t  →  핉 +    the agent’s allocation of output 
in period  t . Denote by   σ   t  ( θ   t )  :  Θ   t  →  Θ   t   the agent’s report in period  t . Let   Σ   t   be the 
set of all such reporting strategies in period  t . Resources can be transferred between 
periods at a rate  R > 0 . The observability of consumption implies that all savings 
are publicly observable. The social planner evaluates welfare using Pareto weights  
α : Θ →  핉 +    , where  α (θ)   is a weight assigned to an agent born in period 0 with 
type  θ.  We assume that  α  is nonnegative and normalize   ∫ 0  

∞   α (θ)  d  F  0   (θ)  = 1.  Social 
welfare is given by   ∫ 0  

∞   α (θ)   ( E  0    ∑ t=0  T     β   t  U ( c  t   ,  l    t  ) )  d  F  0   (θ ) .
We denote partial derivatives of  U  with respect to  c  and  l  as   U  c    and   U  l    and define 

all second derivatives and cross-partials accordingly. Similarly,   U  y    and   U  θ    denote 
derivatives of  U (c,   y _ θ  )   with respect to  y  and  θ.  We make the following assumptions 
about  U. 

ASSUMPTION 2:  U  is twice continuously differentiable in both arguments, satis-

fies   U  c   > 0,  U  l   < 0,  U  cc   ≤ 0,  U  ll   ≤ 0,  and    ∂ _ ∂ θ     
 U  y   (c, y/θ)  _ 
 U  c   (c, y/θ)    ≥ 0. 

The optimal allocations solve the following dynamic mechanism design problem 
(see, e.g., Golosov, Kocherlakota, and Tsyvinski 2003):

(2)    max   
  { c  t   ( θ   t ) ,  y  t   ( θ   t ) }  

 θ   t  ∈  Θ   t ; t=0,  .. , T
  
       ∫ 

0
  
∞

   α (θ)   ( E  0   {   ∑ 
t=0

  
T

     β   t U ( c  t   ( θ   t ) ,  y  t   ( θ   t ) / θ t  ) |  θ} )  d F  0   (θ) ,
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subject to the incentive compatibility constraint:

(3)   E  0   {   ∑ 
t=0

  
T

     β   t  U ( c  t   ( θ   t ) ,  y  t   ( θ   t ) /  θ t  ) |  θ}  

≥  E  0   {   ∑ 
t=0

  
T

     β   t  U ( c  t   ( σ   t  ( θ   t ) ) ,  y  t   ( σ   t  ( θ   t ) ) /  θ t  ) |  θ} ,  ∀  σ   T  ∈  Σ   T  ,  σ   t  ∈  σ   T , θ ∈ Θ, 

and the feasibility constraint:

(4)   ∫ 
0
  
∞

    E  0   {   ∑ 
t=0

  
T

     R   −t   c  t   ( θ   t ) |  θ}  d F  0   (θ) ≤  ∫ 
0
  
∞

    E  0   {   ∑ 
t=0

  
T

     R   −t   y  t   ( θ   t ) |  θ}  d F  0   (θ). 

We follow Fernandes and Phelan (2000) and Kapička (2013) to write the problem 
recursively. Here we sketch the main steps and refer to the two papers for technical 
details. Constraint (3) can be written recursively as

(5)  U ( c  t   ( θ   t ) ,  y  t   ( θ   t ) / θ t  )  + β  ω t+1   ( θ   t  |  θ t  )  ≥ U ( c  t   ( θ   t−1 ,  θ ˆ  ) ,  y  t   ( θ   t−1 ,  θ ˆ  ) / θ t  )  

 + β  ω t+1   ( θ   t−1  ,  θ ˆ  |  θ t  ) ,   ∀  θ ˆ  , θ ∈ Θ,  ∀ t ,

and

   ω t+1   ( θ   t−1 ,  θ ˆ  |  θ t  )  =  E  t   {   ∑ 
s=t+1

  
T

     β   s−t−1  U ( c  s   (  θ ˆ     s ) ,  y  s   (  θ ˆ     s ) / θ s  ) |   θ t  } , 

where    θ ˆ     s  =  ( θ 0   … ,  θ t−1   ,  θ ˆ  ,  θ t+1   ,  … ,  θ s  )   are all the histories in which the agent mis-
reports his type once in the history   θ   s .  It is possible to write the problem recursively 
using  ω ( θ  ˆ  | θ)   as a state variable following the methods developed by Fernandes and 
Phelan (2000). The problem, however, is intractable since  ω ( θ ˆ   | θ)   is a function of   
( θ ˆ  , θ)   and thus the state space becomes infinite dimensional. Kapička (2013) and 
Pavan, Segal, and Toikka (2014) further simplify the problem by replacing global 
incentive constraints (5) with their local analogue, the first-order conditions, to 
obtain a more manageable recursive formulation. When nonlocal constraints do not 
bind one needs to keep track of only on-the-path promised utility  w (θ)  = ω (θ  |  θ)   
and the utility from a local deviation   w  2   (θ)  =  ω 2   (θ  |  θ)   , where   ω 2   (θ  |  θ)   is the deriv-
ative of  ω  with respect to its second argument evaluated at   (θ  |  θ) .  The maximization 
problem (2) can then be written recursively for  t ≥ 1  as

(6)   V  t   ( w ˆ  ,   w ˆ   2  ,  θ −  ) =   min  
c, y, u, w,  w  2  

  
 
    ∫ 

0
  
∞

   (c (θ)  − y (θ)  +  R   −1   V  t+1   (w (θ) ,  w  2   (θ), θ) )   f  t   (θ |  θ −  )  dθ ,

subject to

 (7)  u ˙   (θ)  =  U  θ   (c(θ), y(θ)/θ) + β  w  2   (θ) ,  

(8)   w ˆ   =  ∫ 
0
  
∞

   u (θ)   f  t   (θ |  θ −  )  dθ,  
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(9)    w ˆ   2   =  ∫ 
0
  
∞

   u (θ)   f  2, t   (θ |  θ −  )dθ,  

(10)  u(θ) = U(c(θ), y(θ)/θ) + βw(θ). 

The value function   V  T+1    as well as  w  and   w  2    disappear from this formulation in 
the last period.1 The value function   V  0    in period  t = 0  takes the form

(11)   V  0   (  w ˆ   0  ) =   min  
c, y, u, w,  w  2  

  
 
    ∫ 

0
  
∞

   (c (θ)  − y (θ)  +  R   −1   V  1   (w (θ) ,  w  2   (θ), θ) )   f  0   (θ)  dθ 

subject to (7), (10), and

(12)    w ˆ   0   =  ∫ 
0
  
∞

   α (θ)  u (θ)   f  0   (θ)  dθ. 

There are four state variables in this recursive formulation:   w ˆ    is the promised util-
ity associated with the promise-keeping constraint (8);    w ˆ   2    is the state variable asso-
ciated with the threat-keeping constraint (9);   θ −    is the reported type in period  t − 1 ; 
and age  t.  The initial value    w ˆ   0    is the largest solution to the equation   V  0   (  w ˆ   0  ) = 0 .2

The first-order approach is valid only if at the optimum the local constraints (7) 
are sufficient to guarantee that global incentive constraints (5) are satisfied. It is well 
known that there are no general conditions either in the static mechanism design 
problem with multiple goods (see, e.g., Mirrlees 1976) or in dynamic models (see, 
e.g., Kapička 2013) which guarantee that only local incentive constraints bind. It is 
possible, however, to solve the relaxed problem (6) and (11) and verify whether the 
solution to that problem satisfies global incentive constraints (5). If it does, it is also 
a solution to the original problem (2).

ASSUMPTION 3: In the optimum  c (·)   and  ω (· | θ)   are piecewise      1   and increas-

ing for all  θ;  the derivative of  ω ( θ ˆ   | θ)   with respect to   θ ˆ    (when exists),   ω 1   ( θ ˆ   | θ) ,  is 
increasing in  θ  for all   θ ˆ  ;    U  cl   ≥ 0. 

LEMMA 1: If Assumptions 2 and 3 are satisfied, then (7) implies (5).

The focus of our analysis is on the qualitative and quantitative characterization of 
the optimal labor and savings distortions, or wedges. For an agent with the history 
of shocks   θ   t   at time  t  , we define a labor distortion,   τ  t   y  ( θ   t )  , as

(13)  1 −  τ    t  y  ( θ   t )  ≡   
−  U  l   ( c  t   ( θ   t ) ,  y  t   ( θ   t ) / θ t  )   _______________  
 θ t    U  c   ( c  t   ( θ   t ) ,  y  t   ( θ   t ) / θ t  ) 

   

1 This discussion is given for the case without retirement. If there are retirement periods, the value function 
  V   T ˆ      ( w ˆ  )   is equal to the present value of resources needed to provide   w ˆ    utils to a retired agent between periods   T ˆ    and  
T.  In this case the choice variable   w  2    disappears from the recursive formulation in period   T ˆ   − 1.  The rest of the 
formulation is unchanged. 

2 If we add exogenous government expenditures to our model, then    w ˆ   0    should satisfy   V  0   (  w ˆ   0  ) = − G  where  G  
is the present value of such expenditures. 
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and a savings distortion,   τ  t    s  ( θ   t )   , as

(14)  1 −  τ  t    s  ( θ   t )  ≡  (  1 _ βR
  )    

 U  c   ( c  t   ( θ   t ) ,  y  t   ( θ   t ) / θ t  )    _________________________    
 E    t   { U  c   ( c  t+1   ( θ   t+1 ) ,  y  t+1   ( θ   t+1 ) / θ t+1  ) } 

   . 

II. Characterization of Distortions

In this section, we characterize the properties of the optimal distortions in the 
solution to the planning problems (6) and (11). These distortions are generally 
history dependent. To describe the properties of the solution, we fix any past his-
tory   θ   t−1   and characterize the behavior of the optimal distortions as a function of 
period- t  shock   θ t  .  To simplify notation, we omit explicit dependence on   θ   t−1 .  Thus, 
whenever it does not cause confusion, a notation   z   t   (θ)   denotes the value of a ran-
dom variable   z    t    at a history   ( θ   t−1 , θ)   in the solution of the planning problem;   z  t−1    
denotes   z  t−1   ( θ   t−1 ) . 

A. Separable Preferences

We start with the analysis of the optimal labor distortions when preferences are 
separable between consumption and labor. Let

(15)   ε t   (θ)  ≡   
 U  ll, t   (θ)   l   t   (θ)   _ 

 U  l, t   (θ) 
  ,  σ t   (θ)  ≡ −    

 U  cc, t   (θ)   c  t   (θ)   _ 
 U  c, t   (θ) 

  ; 

  ε t   (θ)   and   σ t   (θ)   are the inverses of the Frisch elasticity of labor supply and the elas-
ticity of the intertemporal substitution (EIS) respectively. It is more convenient to 
work with the inverses of the elasticities since it allows us to easily incorporate the 
limiting cases of infinite elasticities. These elasticities are, in general, endogenous. 
Isoelastic preferences

(16)  U (c, l)  =    c   
1−σ  − 1 _______ 
1 − σ   −    l   

1+ε  _ 
1 + ε   

provide one useful benchmark that keeps both elasticities constant.
The optimal labor distortions are determined by several economic forces that 

have distinct behavior. To separate these forces, we define

   A  t   (θ)  = 1 +  ε t   (θ) ,

  B  t   (θ)  =    
1 −  F  t   (θ)  _ 

θ  f  t   (θ) 
  ,

  C  t   (θ)  =  ∫ 
θ
  
∞

   exp ( ∫ 
θ
  
x
    σ t   ( x ̃  )      c ˙   t   ( x ̃  ) 

 ____ 
 c  t   ( x ̃  )     d x ̃  )   (1 −  λ 1, t     α –   t   (x)   U  c, t   (x) )    

 f  t   (x)  dx
 _ 

1 −  F  t   (θ) 
  ,

  D  t   (θ)  =    
 A  t   (θ)  _  A  t−1  

     
 U  c, t    (θ)  _  U  c, t−1  

    φ t   (θ)  for t > 0,  D  0   (θ)  = 0, 
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where

    λ 1, t   =  ∫ 
0
  
∞

     
 f  t   (x)  _ 

 U  c, t   (x) 
    dx,     α –   t    (θ)  =  { α (θ)   if t = 0,   

1 if t > 0.
    

Functions   A   t    ,   B   t    ,   C    t    , and   D    t    define the four main forces characterizing the optimal 
labor distortions. In the online Appendix we show that applying optimal control 
techniques one can derive the following expression:

(17)    
 τ  t     y  (θ) _______ 

1 −  τ    t     y  (θ)
    =     A    t   (θ)  B  t   (θ)  C  t   (θ)  

 


  
intratemporal component

   +    βR  
 τ  t−1  

   y   _______ 
1 −  τ     t−1  

   y  
    D  t   (θ) 

 

 


  

intertemporal component

  .

Equation (17) shows that the optimal labor distortion is a sum of two compo-
nents. The first component,   A  t    B  t    C  t    ,  takes a form that can be obtained by manip-
ulating the optimality conditions in the static model of Mirrlees (1971). We call 
it the intratemporal component. The second component, to which we refer as the 
intertemporal component, is specific to dynamic models. Before characterizing how 
functions   A  t    ,   B  t    ,   C  t    , and   D  t    depend on the realization of the shock   θ t    it is instructive 
to briefly discuss the economic intuition behind these forces.

The intratemporal component captures the costs and benefits of labor distortions 
in providing insurance against period- t  shocks. These costs and benefits have ana-
logues in static models, such as Diamond (1998) and Saez (2001), although dynam-
ics introduce additional considerations. To see the intuition for these terms, observe 
that a labor distortion for type  θ  discourages that type’s labor supply. The behavioral 
response of labor supply is captured by type  θ ’s Frisch elasticity of labor supply, 
summarized by   A  t   (θ) .  A higher labor distortion for type  θ  lowers total output in pro-
portion to  θ  f  t   (θ)   but allows the planner to relax the incentive constraints for all types 
above  θ.  This trade-off is summarized by the hazard ratio defined in   B  t   (θ) .  Since the 
intratemporal term captures distortions arising from insurance against new shocks, 
the term   B  t    is a hazard of period- t  shocks conditional on a given history   θ   t−1 .  Finally, 
the relaxed incentive constraints allow the planner to extract more resources from 
individuals with skills above  θ  and transfer them to all agents. The social value of 
that transfer depends on the ratio of the Pareto-weighted marginal utility of con-
sumptions of agents with skills above  θ,    ∫ θ  

∞     α –   t   (x)   U  c, t   (x)   f  t   (x)  dx  , to the average mar-
ginal utility, summarized by   λ 1, t  .  This trade-off is captured by the term   C  t   (θ) . 3 The 
redistributive component   C  t    has Pareto weights only in period 0 because efficiency 
requires that the planner maximizes Pareto-weighted lifetime utilities of agents. This 
implies that all future idiosyncratic shocks are weighted with agent’s marginal util-
ity of consumption irrespective of the lifetime Pareto weights.

The intertemporal component captures how the planner uses distortions in the 
current period  t  to provide incentives for information revelation in earlier peri-
ods. The likelihood   φ t   (θ |  θ t−1  )   that appears in   D  t    summarizes the information that 

3 The extraction of resources from types above  θ  also has an income effect on labor supply of those types, which 

is captured by the expression  exp ( ∫ 
θ
  
x
    σ t   ( x ̃  )      c ̇   t   ( x ̃  )  _ 

 c  t   ( x ̃  )     d x ̃  )   in the definition of   C  t    . 
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period  t  shock  θ  carries about   θ t−1  .  To see this effect, note that   ∫ θ  
∞    f  2, t   (x |  θ t−1  )  dx  

measures the difference in the probability of receiving any shock greater than  θ  in 
period  t  between an agent with skill slightly above   θ t−1    and an agent with skill   θ t−1   . 
When   ∫ θ  

∞    f  2, t   (x |  θ t−1  )  dx > 0,  a labor distortion in period  t  in a history   ( θ   t−1 , θ)   is 
less likely to affect type   θ t−1    than a type above. Therefore a positive labor distor-
tion in period  t  allows to relax the incentive constraint in history   θ   t−1 .  The opposite 

argument holds for   ∫ θ  
∞    f  2, t   (x)  dx < 0.  The term   D  t    also depends on     A    t   (θ)  _  A    t−1  

    and     U  c, t   (θ)  _  U  c, t−1  
   ,  

which capture the fact that it is cheaper to provide incentives in those states in which 
the elasticity of labor supply is low and the marginal utility of consumption is high.

The sharpest characterization of the optimal labor distortions can be obtained in 
the tails as  θ  goes to zero   or to infinity. We focus on the situations in which the solu-
tion is well-behaved, as summarized by the following assumption:

ASSUMPTION 4: (a)   lim  c→0,∞         U  cc   c _  U  c  
    ,   lim  c→0,∞         U  ll   l _  U  l  

    are finite and nonzero;  α (·)   is 

bounded with a finite   lim  θ→0,∞      α (θ)  .
(b)   c  t   (θ)  ,   l   t   (θ)   ,    

  c ˙   t   (θ) / c  t   (θ)  ______ 
  y ̇   t   (θ) / y  t   (θ) 

    have limits;     c  t   (θ)  _ 
 y  t   (θ) 

    has a finite, nonzero limit;     τ  t  y  (θ)  _ 
1 −  τ  t  y  (θ) 

    has a 

finite limit as  θ → ∞ ;   l   t   (θ)   has a limit;   U  c, t   (θ)   has a finite limit as  θ → 0 .

The main purpose of this assumption is to rule out two singular cases: that dis-
tortions fluctuate periodically in the tails without settling to a limit and that they 
diverge to  +1  or  − ∞.  We are not aware of any examples in which distortions do 
not settle to a limit. The optimal distortions may diverge to  1  in some cases4 and 
abstracting from them streamlines our discussion. We discuss relaxing this assump-
tion after presenting our main results. We call  U  generic if it satisfies Assumption 

4(a) and   lim  c→∞        −  U  cc   c _  U  c  
   ≠ 1 .

PROPOSITION 1: Suppose Assumptions 1 and 4 are satisfied and preferences are 
separable. Then there are   k  1   ,  k  2   ,  k  3   ,  k   4   ∈ 핉  such that  5

   A    t   (θ)   B  t   (θ)   C  t   (θ)  ∼  k  3     
1 −  F  t   (θ)  _ 

θ  f  t   (θ) 
  ,  D  t   (θ)  = o (  1 _ 

 θ    k   4   
  )   (θ → ∞) , 

   A  t   (θ)   B  t   (θ)   C  t   (θ)  ∼  k  1     
 F  t   (θ)  _ 
θ  f  t   (θ) 

   ,  D  t   (θ)  ∼  k  2    φ t   (θ)    (θ → 0) . 

  k  3   > 0  depends generically only on  U  and   f  t    and   k   4   > 0  depends generically only 
on  U,    k  1    and   k  2    generally depend on the past history of shocks.

4 For example, Mirrlees (1971) shows that labor distortions can only converge to 1 for a class of preferences 
that imply that  ε (θ)  → ∞.  

5 For any functions  h, g,  and  c ∈  핉 
–
  ,   h(x)  ∼ g(x)   (x → c)  if   lim  x→c      h (x) /g(x) = 1,   h(x) = o (g(x))    (x → c)  

if   lim  x→c      h (x) /g(x) = 0,  and  h (x)  = O (g (x) )    (x → c)  if there is a constant  K  such that  |h(x)  | ≤ K | g(x)|  for all  
x  in a neighborhood of  c.  
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This proposition offers two insights about the economic forces that deter-
mine the labor distortions in the right and left tails. First, it shows the asymptotic 
behavior of each component in the tails. As we shall see, these results are very 
informative about the behavior of the labor distortions and their components. The 
second insight is that the labor distortions in the right tail depend only on the 
functional form of  U  and the tail behavior of the hazard; the history of past shocks, 
redistribution objectives or any other property of the optimum do not affect those 
parameters.

To illustrate the intuition for this result, assume that preferences are isoelas-
tic and first consider the distortions in the right tail, as  θ → ∞.  We have  
 l   (θ)    ε  =  (1 −  τ     y  (θ) )  θc   (θ)    −σ   and by Assumption 4  c (θ)  ∝  (1 −  τ   y  (θ) )  θl (θ)     in the 

limit. Since  1 −  τ   y  (θ)   converges to a nonzero limit,   c  t   (θ)  ∝  θ     
1+ε _ σ+ε    ,  which implies that 

the marginal utility of consumption declines at a geometric rate,   U  c, t   (θ)  ∝  θ     
− (1+ε)  σ _ σ+ε   .  

This has two implications for the behavior of the labor distortions in the right tail. 
The first implication is that   D  t    declines at a geometric rate that does not depend 
on the past history as  θ → ∞.  The second implication is that    α –   t    λ t    U  c, t    drops out 
of the expression for   C  t   ,  indicating that asymptotically the planner maximizes the 
extraction of resources from the right tail of the distribution. The expression for the 
peak of the Laffer curve for the labor distortion can be obtained in a closed form and 
it depends only on the hazard rate   B    t    and the income and substitution effects summa-
rized by  σ  and  ε.  This provides an explanation for the asymptotic equivalence result 
for the intratemporal term in the right tail.

The asymptotic behavior of the intratemporal component in the left tail is shaped 
by the tension between the hazard   B  t    and the redistributive term   C    t  .  The two forces 
affect the labor distortion in the opposite directions. The hazard   B    t    favors high 
labor distortions because low  θ  types are not very productive and distorting their 
labor supply has little effect on output. It is easy to see from the definition of   B   t    
that   B    t   ∼   1 _ θ  f  t  

      (θ → 0) .  The redistributive term   C  t    favors low labor distortions in the 
left tail because the marginal utility of consumption of those agents is low. We show 
in the online Appendix that   C  t   ∼  k ˆ    F  t      (θ → 0) ,  where   k ˆ   = 1 −   α –   t   (0)   λ t    U  c, t   (0)  . 
These two observations imply the asymptotic equivalence result for the intratempo-
ral component in the left tail. The behavior of intertemporal component, particularly 

of the term   D  t   ,  can be seen directly from its definition with   k  2   =    A  t   (0)  _  A  t−1  
      U  c, t   (0)  _  U  c, t−1  

  .  The 

optimal distortions in the left tail are typically history-dependent since   U  c, t   (0) ,    λ t    , 
and   A  t   (0)   all generally depend on the past realizations of the shock.

Proposition 1 also shows a link between the optimal labor distortions in dynamic 
life-cycle models and static environments built on Mirrlees (1971). In particular, 
Diamond (1998) first used the decomposition similar to our intratemporal compo-
nent to analyze the behavior of optimal distortions in a static model with quasilinear 
preferences. Our analysis of the intratemporal component is a generalization of his 
approach to more general preferences and shock distributions, which also applies to 
static settings. Since Proposition 1 shows that the dynamic component disappears in 
the right tail of the distribution, the economic forces that determine the optimal labor 
distortions for high shocks are similar in static and dynamic settings. We further 
discuss this connection in specific examples below.
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Proposition 1 shows that the hazard rate of productivity shocks plays an import-
ant role in shaping the optimal labor distortion. To gain further insight into that 
behavior we focus on a family of stochastic processes frequently used in applied 
labor and public finance literatures.6

ASSUMPTION 5:   θ t    satisfies

  ln  θ t   =  b  t   + ρ ln  θ t−1   +  ϵ t   , 

where   ϵ t    is drawn from one of the three distributions:
(a) lognormal:   ϵ t   ∼ N (0, υ) ; 
(b) Pareto-lognormal:   ϵ t   ∼ NE (μ, υ, a)   , where NE is a normal-exponential 

distribution;
(c) mixture of lognormals:   ϵ t     ∼ N ( μ i  ,  υ i  )   with probability   p  i    for  i = 1,  … , I ; let  

υ =  max  i       υ i  . 

The lognormal distribution (a) is a special case of the mixture of lognormals 
(c). It is useful to keep in mind that if shocks are lognormal then   ϵ t    has skewness of 
zero and kurtosis of three (or excess kurtosis of zero), while the mixture distribu-
tion allows to construct   ϵ t    with other values of these moments. We can use the tail 
properties of these distributions (see the online Appendix for details) to prove the 
following corollary to Proposition 1.

COROLLARY 1: Suppose that Assumptions 4 and 5 are satisfied and preferences 
are separable. Then there are constants   σ –   > 0,  ε –   > 0  such as

(18)    lim  
θ→∞

  
 
    C  t   (θ)  = 1 +    σ –   ____  σ –   +  ε –       lim  

θ→∞
  

 
     

 τ  t    y  (θ)  _ 
1 −  τ  t    y  (θ) 

   . 

Moreover,   σ –   =  lim  c→∞        −  U  cc   c _  U  c  
   ,    ε –   =  lim  l→∞         U  ll   l _  U  l  

    if   σ –   < 1,    ε –   =  lim  l→0         U  ll   l _  U  l  
    if   

σ –   > 1. 
Asymptotically as  θ → ∞ ,

(19)     
 τ  t  y  (θ)  _ 

1 −  τ  t  y  (θ) 
   ∼  A   t   (θ)   B    t   (θ)   C    t   (θ)  

 ∼  

⎧

 
⎪

 ⎨ 
⎪

 
⎩
 
  [a   1 ____ 1 +  ε –    −    σ –   ____  σ –   +  ε –   ]    

−1
   if   f  t    is Pareto-lognormal, a   1 ____ 1 +  ε –    −    σ –   ____  σ –   +  ε –    > 0

       
  [  

ln θ _ 
 υ   2 

     1 ____ 1 +  ε –   ]    
−1

   if   f  t    is lognormal/mixture.
    

6 For example, Storesletten, Telmer, and Yaron (2004), and Farhi and Werning (2013) use lognormal distribu-
tions, Badel and Huggett (2014) and Lockwood, Nathanson, and Weyl (2014) use Pareto-lognormal distributions, 
Geweke and Keane (2000) and Guvenen et al. (2013) use mixtures of lognormals. 
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Asymptotically as  θ → 0,  as long as  ρ  τ    t−1  
y   ≠ 0, 

(20)    
 τ    t  y  (θ)  _ 

1 −  τ    t  y  (θ) 
   ∼ βR    τ  t−1  

  y   _ 
1 −  τ    t−1  

y  
    D  t   (θ)  ∼ βR    τ    t−1  

y   _ 
1 −  τ    t−1  

y  
   ρ   

 U  c, t   (0) 
 _  U  c, t−1  
     
 A  t   (0) 
 _  A  t−1  
   . 

Although the three classes of the distributions of shocks have substantial differ-
ences, they share some common implications. All of them imply that the optimal 
labor distortions are determined by the intratemporal forces in the right tail and by 
the intertemporal forces in the left tail. The optimal labor distortions in the right 
tail do not depend on the history of the shocks and are pinned down by the two 
elasticities defined in Corollary 1 and the tail behavior of the hazard rate:   B  t   ∼  a   −1   
in the Pareto-lognormal case,   B  t   ∼   [  

ln θ _ 
 υ   2 

  ]    
−1

   in the lognormal/mixture case as  

θ → ∞ . The labor distortions in the left tail depend on the autocorrelation of the 
shock  process, past labor distortions, and the ratios of the marginal utilities of con-
sumption and the Frisch elasticities of labor supply in periods  t  and  t − 1. 

We next discuss the intuition for Corollary 1 and make some additional obser-
vations about its implications. The first result of the corollary, equation (18), char-
acterizes properties of the redistributive component   C    t    in the right tail. It is a sum 
of two terms. The number one comes from the fact that the marginal utility of the 
highly skilled converges to zero and the planner would like to extract all the surplus 
from those agents. The second term on the right-hand side of (18) captures the 
income effect of the labor supply from the marginal labor distortions on type  θ  as  
θ → ∞. 7 The size of the income effect is proportional to the limiting tax rate.

The second part of Corollary 1 characterizes labor distortions in the right tail. The 
fact that they are determined by the intratemporal forces follows from Proposition 1 
and Assumption 5. We know from our decomposition (17) that the optimal distor-
tions are the sum of the intertemporal and the intratemporal components. The inter-
temporal component always converges to zero at a geometric rate by Proposition 1. 
The intratemporal component, when   f  t    satisfies Assumption 5, either does not con-

verge to zero at all or converges to zero at a slower rate of    [  
ln θ _ 
 υ   2 

  ]    
−1

 .  Hence, the intra-
temporal forces eventually dominate the intertemporal forces.

Note that when shocks are drawn from a mixture distribution,  υ  is the highest 
standard deviation in the mixture. In many applications (see, e.g., Guvenen et al., 
2013) this parameter is chosen to capture kurtosis of the shock process. Hence, sto-
chastic processes with higher kurtosis, holding variance fixed, imply higher labor 
distortions in the right tail. The intuition is as follows. If kurtosis of the shock pro-

cess is high, the hazard ratio    1 −  F  t   (θ)  _ 
θ  f  t   (θ) 

    is large for high  θ . This implies that any given 

marginal labor distortion has a smaller output loss than the same distortion with 
lognormal shocks. Also note that even though     υ   2  _ 

ln θ    converges to zero, this rate of 
convergence is very slow.

As we noted in the discussion of Proposition 1, the intratemporal component in 
the right tail depends only on the hazard   B  t   ,  the elasticity  ε  and the income effect, 
which with separable preferences is summarized by     σ –   ____  σ –   +  ε –      in the limit. The income 

7 In static models the income effect emerges because a higher marginal labor tax on type  θ  increases average 
taxes on all types above  θ  and induces them to increase labor supply. 
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effect becomes second order if the labor distortions go to zero, which explains why 
it disappears in the asymptotic formulas in the lognormal/mixture case in (19); it 
affects the limiting labor distortions if the shocks are fat-tailed.

Expression (19) generalize those derived by Mirrlees (1971), Diamond (1998), 
and Saez (2001) for the optimal behavior of labor distortions in static models. 
Corollary 1 thus shows that their insights continue to hold in dynamic environments 
in the right tail of the distribution. The restriction  a   1 ____ 1 +  ε –     −    σ –   ____  σ –   +  ε –     > 0  is needed in 

(19) to make sure that the limiting value of     τ  t  y  _ 
1 −  τ  t  y 

    is finite. When this restriction is 
not satisfied,   τ  t  y   may converge to one. Note that even in this case the general conclu-
sion of Corollary 1 remains unchanged—the optimal labor distortions are still deter-
mined by the intratemporal component as  θ → ∞  even if this component diverges 
to infinity.

The last part of Corollary 1 characterizes the behavior of labor distortions in 
the left tail. This result also follows from Proposition 1 and Assumption 5. Under 
Assumption 5 the intratemporal component converges to zero, while the intertem-
poral component is nonzero as long as the shocks are not i.i.d.

Expression (20) further simplifies if preferences are isoelastic. In this 

case     τ  t  y  (θ)  _ 
1 −  τ  t  y  (θ) 

   ∼ βR    τ  t−1  
y   _ 

1 −  τ  t−1  
y  

   ρ   (   c  t   (0)  _  c  t−1    )    
−σ

   as  θ → 0.  Thus, the marginal distortions 

depend on the autocorrelation of the shocks, past labor distortions, and consump-
tion growth rate. The latter two forces generally depend on the agent’s age  t,  the past 
history of shocks, and Pareto weights.

We can also use decomposition (17) to obtain additional insights about 
 time-series properties of the optimal labor distortions studied by Farhi and Werning 
(2013). Observe that   E t−1     1 _  U  c, t  

    B  t    C  t   =  cov t−1   (ln θ,   1 _  U  c, t  
  ) .  If we assume isoelastic  

preferences, multiply (17) by    1 _ 
 U  c, t   (θ) 

    and integrate, we get

(21)   E  t−1   [  
 τ  t    y  (θ)  _ 

1 −  τ  t    y  (θ) 
     1 _ 
 U  c, t   (θ) 

  ]  = ρβR    τ  t−1  
  y   _ 

1 −  τ  t−1  
  y  

     1 _  U  c, t−1  
   +  (1 + ε)   cov t−1   (ln  θ,   1 _  U  c, t  

  ) . 

This equation is one of the key results of Farhi and Werning (2013). In particular, 
they show that it implies that the marginal utility-adjusted labor distortions follow 
an AR(1) process with a drift. Persistence of that process is determined by the auto-
correlation parameter  ρ,  and its drift is strictly positive since generally we should 

expect that   cov t−1   (ln θ,   1 _  U  c, t  
  )  > 0.  Farhi and Werning (2013) conclude that the opti-

mal labor distortions should increase with age. Corollary 1 qualifies this result by 
showing that this drift should be observed in the left but not right tails of shock 
realizations since the asymptotic behavior of the labor distortions in the right tail is 
independent of  t  by equation (19). The intuition for this result follows from our dis-
cussion of the underlying economic forces that determine the optimal labor wedge.

In the analysis above we restricted our attention to the preference specifications 
for which the Frisch elasticity and the EIS are finite. It is often possible to obtain 
simpler closed form expressions when this assumption is relaxed. These expres-
sions, although special, can illustrate some key trade-offs in a transparent way. 
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Assume, for example, that preferences are isoelastic with  σ = 0.  In this case we 
obtain from (17) for  t = 0 

    
 τ  0  

  y  (θ) 
 _ 

1 −  τ  0  
  y  (θ)    =   (1 + ε)  

 
 

⏟
 

 A  0   (θ) 
      

 1 −  F  0   (θ)  _______ 
θ  f  0   (θ) 

   
 
 



 

 B  0   (θ) 

       ∫ 
θ
  
∞

   (1 − α (x) )     f  0   (x)  dx
 _ 

1 −  F  0   (θ) 
    

 
 



  

  C  0   (θ) 

   

and for  t > 0 

    
 τ  t    y  (θ)  _ 

1 −  τ  t    y  (θ) 
   = βRρ    τ  t−1  

  y   _ 
1 −  τ  t−1  

  y  
  . 

The quasilinear case is special since it sets both the risk-aversion and the income 
effect to zero. Since agents are risk-neutral, they require no insurance against 
life-cycle shocks and therefore the intratemporal components are zero for all  t > 0.  
Persistence of the shock process determines how initial heterogeneity affects labor 
distortions in those periods because   φ t   (θ)  = ρ  under any of the three stochastic 
processes in Assumption 5.

The absence of income effects allows us to illustrate transparently the trade-off 
between the redistribution and the minimization of output losses (i.e., “efficiency”) 
in period 0. Suppose that  α  monotonically decreases and converges to zero, so that 
the planner favors redistribution from the more productive types. In this case the 
redistributive component   C  0    monotonically increases from zero to one, reflecting 
higher gains of redistribution from higher types. The hazard rate   B  0    starts at  ∞  and 
decreases (monotonically in the case of lognormal and Pareto-lognormal   f  0    ) to its 
long-run finite value as  θ → ∞  , reflecting the fact that labor distortions for more 
productive types generate higher output losses.

Figure 1 illustrates how the shape and the size of the labor distortions depend 
on the hazard rate. We consider the three types of distributions from Assumption 5 
and choose the parameters of these distributions so that  ln  θ  has mean and vari-
ance of zero and one respectively in all cases. The Pareto-lognormal distribution 
has a tail parameter of 2.5. The mixture is drawn from two mean-zero normal dis-
tributions chosen so that excess kurtosis of  ln  θ  is equal to ten.8 We set  ε = 2  and 
 α (θ)  ∝ exp (−θ) . 

This figure shows several general principles that, as we shall see in Section III, 
carry through to calibrated economies with risk-aversion. Panels A, B, and C show 
that the redistributive component   C   t    converges quickly to its limiting value of  one  
as  θ → ∞,  while the hazard rate   B   t    converges to its right limit much slower. This 
implies that the shape of the optimal labor distortions resembles the shape of the 
hazard rate as long as  θ  is not too low. The hazard rates are slowly decreasing when 
shocks are lognormal or Pareto-lognormal, and are first U-shaped and then slowly 
decreasing when shocks are drawn from a mixture of lognormal. The optimal labor 
distortion   τ  0  

  y   (solid lines in panels D, E, and F), which is a monotonic transformation 

of     τ  0  
  y  _ 

1 −  τ  0  
  y 
   ,  follows the same patterns.

8 There are multiple ways to generate excess kurtosis of ten and variance of one from the mixture of normal 
distributions. Figure 1 shows a representative pattern of distortions. 
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Panels A, B, and C of Figure 1 also show that hazard rates in lognormal/mixture 
cases converge to their right limit of zero slowly. At  θ = 20,  which is about three 
standard deviations above the mean, both the hazard rate   B  t    and the optimal labor 
distortions with both lognormal and mixture shocks are substantially above zero. 
Even at  θ = 22,000 , which is 10 standard deviations above the mean, the optimal 
labor distortion in the mixture case is equal to 0.62, both well above its limit value 
of zero and the limit value of the thick-tailed Pareto-lognormal shocks.

Panels D, E, and F of Figure 1 show that two commonly used summary statistics 
of the shock process—variance and the fatness of the tail—do not provide sufficient 
information to determine the size of the distortion or whether the optimal distortions 
should be progressive, even in the tail. The dashed line in panels D, E, and F is the 
average labor distortion defined as   ∫ 0  

∞    τ  0  
y   (θ)  d F  0  .  The average labor distortions are 

almost 10 percentage points lower in the mixture of lognormals case. The reason for 
it is that, due to the high kurtosis of that distribution, most of the time individuals 
receive small shocks that require little insurance. On the other hand, medium size 
shocks occur with a much higher probability in the mixture case and hence the labor 
distortions for such shocks are high. Lognormal and Pareto-lognormal shocks imply 
very similar labor distortions for most of the shocks even though the former distribu-
tion has a thin tail while the latter has a thick Pareto tail. Figure 1 also contradicts the 
view that the optimal labor distortions should be progressive for high types if shocks 
are fat-tailed.9 The optimal labor distortions are progressive in the right tail if the 
hazard rate   B  0    either converges to its long-run value from below or converges from 

9 See, for example, Diamond (1998) and Diamond and Saez (2011). 

Figure 1. Optimal Labor Distortions in Period 0 and Their Components for Three Distributions of Shocks 
with Quasilinear Preferences
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above at a faster rate than the redistributive component   C  0    converges to 1. The oppo-
site result holds with Pareto-lognormal shocks for a wide range of Pareto weights  α. 

B. Nonseparable Preferences

We discuss next the extensions of our analysis to the case when utility is not 
separable in consumption and labor. We show that many principles discussed in the 
previous section continue to hold, although with some caveats. We also discuss the 
optimal savings distortions.

Let   γ t   (θ)  ≡    U  cl, t    (θ)   l  t    (θ)  _ 
 U  c, t    (θ) 

    be the degree of complementary between consumption 

and labor and   X 
–
  =  lim  θ→∞         c  t    (θ)  _  

 (1 −  τ  t  y  (θ) )   y  t   (θ) 
    be the marginal propensity to consume 

out of the after-tax income in the right tail of the distribution. We continue to make 
Assumption 4 with an additional extension that   σ t   (θ) ,    ε t   (θ)  , and   γ t   (θ)   have finite 
limits denoted by   σ –  ,  ε –  ,  γ –    as  θ → ∞. 

The decomposition of the labor distortions (17) still holds in the nonseparable 
case, with the following modifications:

  A  t   (θ)  = 1 +  ε t   (θ)  −  γ t   (θ) , 

  C  t   (θ)  =  ∫ 
θ
  
∞

   exp ( ∫ 
θ
  
x
   [ σ t   ( x ̃  )      c ˙   t   ( x ̃  ) 

 ____ 
 c  t   ( x ̃  )    −  γ t   ( x ̃  )      y ̇   t   ( x ̃  ) 

 ____ 
 y  t   ( x ̃  )   ]  d x ̃  )   (1 −  λ 1, t     α –   t   (x)   U  c, t   (x) )    

 f  t   (x)  dx
 _ 

1 −  F  t   (θ) 
   , 

and

   D  t   (θ)  =   
 A   t   (θ)  _  A  t−1  

     
 U  c, t   (θ)  _  U  c, t−1  

      
 θ t−1    ∫ 

θ
  
∞

   exp (−  ∫ 
θ
  
x
    γ t   ( x ̃  )    d x ̃   _  x ̃    )   f  2, t   (x)  dx

   _________________________  
θ  f  t   (θ) 

   . 

One difference with the separable case is in the intertemporal component and 
term   D  t   . When preferences are nonseparable, the marginal utility of consumption 
is no longer the sufficient statistic for the relative costs of providing incentives in 
periods  t  and  t − 1  and   γ t    enters into the expression for   D  t   .  If   U  cl   ≥ 0  10 and  ρ ≥ 0  , 
then much of the previous analysis of the intertemporal component still applies 
because   D  t   (θ)   is bounded and both   U  c, t   (θ)   and   D  t   (θ)   decline to zero at a geometric 
rate as  θ → ∞.  In this case the asymptotic behavior of labor distortions in the right 
tail, assuming shocks satisfy Assumption 5, is driven by the intratemporal compo-
nent. That is, as  θ → ∞  ,

(22)    
 τ  t  y  (θ)  _ 

1 −  τ  t  y  (θ) 
   ∼  A   t   (θ)   B   t   (θ)   C    t   (θ)  

∼  

⎧

 
⎪

 ⎨ 
⎪

 

⎩

 
  [a   1 ______ 1 +  ε –  −  γ –    −    σ –   −  γ –  __________  

 σ –   +  ε –  −  γ –  ( X 
–
  + 1)   ]    

−1
   if   f  t    is Pareto-lognormal, a   1 ______ 1 +  ε –  −  γ –    −    σ –   −  γ –  __________  

 σ –   +  ε –  −  γ –  ( X 
–
  + 1)    > 0

         
  [  

ln θ _ υ     1 ______ 1 +  ε –  −  γ –   ]    
−1

   if   f  t    is lognormal/mixture.

    

10 Empirical labor literature often finds that consumption and labor are complements Browning, Hansen, 
and Heckman (1999), although some authors recently challenged that conclusion Blundell, Pistaferri, and 
Saporta-Eksten (2014). 
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A more substantive difference with the separable case is that the limiting val-
ues   ε –  ,    σ –    ,   γ –   , and   X 

–
   are endogenous and depend on the way incentives are provided 

 intertemporally. To illustrate the key economic mechanism, it is convenient to 
rewrite   A   t    and   C    t    not in terms of structural parameters   ε t  ,    σ t   , and   γ t    but in terms 
of income and substitution effects. In particular, let   ζ  t  u  (θ)   and   ζ  t  c  (θ)   be the uncom-
pensated and compensated elasticities of labor supply, holding savings fixed, and   
 η t    (θ)   be the income effect holding savings fixed defined by the Slutsky  
equation   η t    (θ)  =  ζ  t  u  (θ)  −  ζ  t  c  (θ) .  Then   A  t    and   C  t    can be written as

   A  t   (θ)  =    
1 +  ζ  t  u  (θ)  _ 

 ζ  t  c  (θ) 
  

  C  t   (θ)  =  ∫ 
θ
  
∞

   exp ( g  t   (x; θ) )   (1 −  λ 1, t     α –   t   (x)   U  c, t   (x) )    
 f  t   (x)  dx

 _ 
1 −  F  t   (θ) 

  , 

where

   g  t   (x ; θ)  =  ∫ 
θ
  
x
   {  

−  η t   ( x ̃  ) 
 _ 

 ζ  t  c  ( x ̃  )      
  y ̇   t   __  y  t     x ̃   −  σ t   ( x ̃  )    

 (1 −  τ  t  y  ( x ̃  ) )    y ̇   t   −   c ˙   t    _____________  c  t     x ̃  }  d x ̃  . 

The dependence of   A  t   (θ)   on the elasticities is standard and appears in the same 
way as in the static models (see Saez 2001). The term   g  t    measures the income effect 
on labor supply. It consists of two parts. The first one determines the income effect 
on labor supply holding savings fixed, which is also analogous to the equivalent term 
in the static models. In dynamic models relaxed incentive constraints allow the plan-
ner to redistribute resources not only in the current period but also in the future. This 
dynamic income effect is captured by the second term in function   g  t   .  It depends on 
the elasticity of intertemporal substitution,   σ t  ,  and the difference between the after-
tax income and consumption in period  t.  This term is positive if and only if reporting 
a higher  θ  makes the consumers better off in the future,   ω 1, t+1   (θ | θ)  ≥ 0. 11 In this 
case the intertemporal provision of incentives lowers the effective income effect on 
labor supply.

To get the intuition for the behavior of the optimal labor distortions we consider 
commonly used GHH preferences (see Greenwood, Hercowitz, and Huffman 1988):

(23)  U (c, l)  =   1 _ 
1 − ν     (c −   1 _ 

1 + 1/ζ    l   
1+1/ζ )    

1−ν
  

for some  ν, ζ > 0.  For such preferences   A   t   (θ)  = 1 + 1/ζ,    η t   (θ)  = 0,    γ t   (θ)  ≥ 0  
and   D  t   (θ)   converges to zero at a geometric rate as  θ → ∞ . Therefore many of the 
arguments used to prove Corollary 1 continue to apply. In particular, as long as   f  t    
satisfies Assumption 5, labor distortions are asymptotically equivalent to the intra-
temporal term in the right tail. If the shocks are mixture/lognormal, then the income 

effects are of second order and     τ  t  y  (θ)  _ 
1 −  τ  t  y  (θ) 

   ∼   [  
ln θ _ υ     1 _ 

1 + 1 / ζ  ]    
−1

     (θ → ∞) . 

11 This condition holds if Assumption 3 is satisfied. 
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When the tails of the shock process are Pareto, the income effects are no longer 
of the second order. In this case, the redistributive component   C   t   (θ)   depends on the 
limit, both on the marginal propensity to consume and the limiting value of labor 
distortions,

(24)    lim  
θ→∞

  
 
    C    t   (θ)  = 1 + ζ   

−  σ –   (1 −  X 
–
 ) 
 _________ 

 X 
–
 
     lim  

θ→∞
  

 
     

 τ  t  y  (θ)  _ 
1 −  τ  t  y  (θ) 

   . 

The limiting value of labor distortions is then given by

    
 τ  t  y  (θ)  _ 

1 −  τ  t  y  (θ) 
   ∼   [a   1 _ 

1 + 1 / ζ   − ζ   
−  σ –   (1 −  X 

–
 ) 
 _________ 

 X 
–
 
  ]    

−1

  (θ → ∞) , 

provided that the expression on the right hand side is positive. Unlike the separable 
case, the dynamic provision of incentives, summarized by   X 

–
 ,  affects the value of 

labor distortions in the limit. If the marginal propensity to consume converges to 
one for high  θ,  as it is the case in static models, then this formula reduces to the 
one obtained by Saez (2001). This labor distortion is strictly lower than the static 
limit if reporting higher type in period  t  improves utility in the future, since   ω 1, t+1   
(θ  |  θ)  ≥ 0    (θ → ∞)   if and only if   X 

–
  ≤ 1  (see the online Appendix).

We can obtain starker results if we replace the power utility function in (23) with 
any functional form that bounds  U″/U ′ away from zero (which effectively implies 
that   σ t   (θ)  → ∞  as  θ → ∞,  while keeping   γ t   (θ)  > 0 ). In this case it can be shown 
that the marginal labor distortions converge to zero independently of the thickness 
of the Pareto tail (see Golosov, Troshkin, and Tsyvinski 2011) or properties of   X 

–
 .  

See Lemma 9 in the online Appendix for the formal statement of this result and its 
proof.

We conclude this section with a general result about the optimality of savings 
distortions. When preferences are separable, it is well known (see, e.g., Golosov, 
Kocherlakota, and Tsyvinski 2003) that savings distortions are positive as long as   var t   
( c  t+1  )  > 0.  We show that a weaker version of this result holds in the  nonseparable 
case. Let    τ ̃    t    s   be a lifetime saving distortion defined as

  1 −   τ ̃    t    s  ( θ   t )  ≡   (  1 _ βR
  )    

T−t
    

 U  c   ( c  t   ( θ   t ) ,  y  t   ( θ   t ) / θ t  )   ___________________   
 E  t   { U  c   ( c  T     ( θ   T   ) ,  y  T   ( θ   T   ) / θ T  ) } 

   . 

PROPOSITION 2: Suppose Assumption 2 is satisfied,   U  cl   ≥ 0  , and   F  T     (0  | θ)  = 1  
for all  θ.  Then   τ  t    y  ( θ   t )  ≥ 0  implies    τ ̃    t    s  ( θ   t )  ≥ 0  with strict inequality if variance of 
consumption in period  T  conditional on information in   θ   t   is positive,   var t   ( c  T  )  > 0. 

Note that    τ ̃    t    s  ( θ   t )  > 0  implies that some savings distortions following history   θ   t   
must be strictly positive. By the law of iterated expectations

    1 _ 
1 −   τ   ̃    t  s 

   =  E  t     1 _ 
1 −  τ    t  s 

   × …  ×   1 _ 
1 −  τ  T−1    s     , 
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therefore,    τ ̃    t    s  > 0  if there is a positive saving distortion in at least some states in 
the future.

The intuition for this result comes from the observation made by Mirrlees (1976) 
that in a static, multi-good economy it is optimal to have a positive distortion on the 
consumption of goods that are complementary with leisure, assuming the optimal 
labor tax is positive. In our dynamic economy the assumption that  γ ≥ 0  implies 
that the future consumption is more complementary with leisure and hence a posi-
tive wedge is desirable. This wedge, however, cannot be interpreted as a distortion 
in the Euler equation of the consumer, since this is a distortion conditional on pro-
viding optimal insurance in the future. Therefore an extra unit of savings does not 
increase future utility by  βR  E  t    U  c, t+1    as in the standard incomplete market models 
and this relationship in general is more nuanced.12 The optimal provision of incen-
tives implies that if in any period   T ˆ    the labor supply becomes constant (as it happens 
if individuals retire in that period), an extra unit of savings generates    1 ____ 

β  R    T ˆ  −t 
    E  t     1 ___  U  c,  T ˆ    

    
utils in the future, which is an extension of the Inverse Euler equation obtained in the 
separable case. Then the combination of arguments in Mirrlees (1976) and Golosov, 
Kocherlakota, and Tsyvinski (2003) leads to Proposition 2.

III. Quantitative Analysis

We now turn to the quantitative analysis of the model calibrated to the US admin-
istrative data. We study a 65-period life cycle in which agents work for the first 40 
periods, from 25 to 64 years old, and then retire for the remaining 15 years. For a 
baseline calibration we use isoelastic preferences (16) with  σ = 1  and  ε = 2  and 
choose  β =  R   −1  = 0.98  and utilitarian Pareto weights. We provide comparisons 
where the baseline calibrated stochastic process is replaced with a lognormal pro-
cess with the same mean and variance, as well as robustness checks in the online 
Appendix.

Our analysis above emphasizes the stochastic process for skills as a crucial deter-
minant of the key features of the optimal distortions. Figure 1 shows that higher 
moments play an important role in determining their patterns. Such moments are 
difficult to estimate reliably using easily accessible panel datasets such as the US 
Panel Study of Income Dynamics due to the small sample size and top coding. To 
overcome this problem we use the findings of Guvenen, Ozkan, and Song (2013) 
and Guvenen et al. (2013), who study newly available high-quality administrative 
data from the US Social Security Administration based on a nationally representa-
tive panel containing 10 percent of the US male taxpayers from 1978 to 2011.

Guvenen, Ozkan, and Song (2013) and Guvenen et al. (2013) document that the 
stochastic process for annual log labor earnings is highly leptokurtic, negatively 
skewed, and is not well approximated by a lognormal distribution. They also show 
that the empirical shock process can be approximated well by a mixture of three 
lognormal distributions, shocks from two of which are drawn with low  probabilities. 

12 Golosov, Troshkin, and Tsyvinski (2011) discuss in detail the mapping between our recursive mechanism 
design problem and a static optimal tax problem with multiple goods. We refer the reader to that paper for the 
intuition on how distortions driven by complementarities with leisure map into distortions in the Euler equation. 
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The high-probability distribution controls the variance of the shocks, while the two 
low-probability distributions control their skewness and kurtosis.

Guvenen et al. (2013) report statistics for the stochastic process for labor earn-
ings, which correspond to   y  t    in our model. To calibrate the stochastic process for 
skills   θ t    we use the following procedure. We assume that the initial   θ 0    is drawn from 
a three-parameter Pareto-lognormal distribution, analyzed in the previous section, 
and that for all  t > 0  the stochastic process for   θ t    follows a mixture of lognormals13

  ln  θ t   = ln  θ t−1   +  ϵ t   , 

where

   ϵ t   =  

⎧

 
⎪
 ⎨ 

⎪
 

⎩
 
 ϵ 1, t   ∼    ( μ 1   ,  υ 1  ) 

  
w.p.   p  1  ,

     ϵ 2, t   ∼    ( μ 2   ,  υ 2  )   w.p.   p  2  ,    
 ϵ 3, t   ∼    ( μ 3   ,  υ 3  ) 

  
w.p.   p  3  .

   

We impose   p  3   = 1 −  p  1   −  p  2    ,   υ 3   =  υ 1    ,   μ 2   = 0 . The individuals, whose skills 
are drawn from the stochastic process, choose their optimal labor and savings given 
a tax function  T(y).  We follow Heathcote, Storesletten, and Violante (2014), who 
find that a good fit to the effective earnings taxes in the United States is given by  
T(y) = y − λ  y   1−τ   , where the progressivity parameter  τ  is equal to  0.151 .14 We 
choose the six parameters of the stochastic process and the three parameters of the 
initial distribution to balance the government budget and to minimize the sum of the 
least absolute deviations of nine simulated moments of the earnings process in the 
model from the nine moments in the data in Guvenen et al. (2013) and Guvenen, 
Ozkan, and Song (2013).

Table 1 reports the calibrated parameters, the simulated moments, and the data 
targets.15 Table A.4 in Guvenen, Ozkan, and Song (2013) provides the fiftieth ,  nine-
tieth, and ninety-ninth percentiles of the earnings of the 25-year-old in their base 
sample that we use as data targets for period 0   distribution of earnings in the model 
and report as the last three numbers in the bottom row of Table 1. Guvenen et al. 
(2013) report in Table II, Specification 3, their estimation results for the stochastic 
process of earnings in the data, which we use to generate the other six data targets 
reported in the bottom row of Table 1.16

13 Guvenen et al. (2013) find that the persistence of the stochastic process for earnings is very close to one. We 
set  ρ = 1  in our calibration of the shock process and later discuss the differences between the earnings process and 
the shock process in the model. 

14 The marginal labor distortions in the model correspond to the effective marginal labor tax rates in the data, 
which is a combination of the statutory tax rate (which is generally progressive) and the rate of the phase out of 
welfare transfers (which is generally regressive). In the United States, there is heterogeneity in the shapes of the 
effective tax rates as a function of income as they vary by state, family status, age, type of residence, etc. Some 
typical patterns of the effective marginal rates in the US data are progressive, U-shaped, and inverted S-shaped (see 
Congressional Budget Office 2007 and Maag et al. 2012).

15 Kelly’s skewness is defined as     (P90 − P50)  −  (P50 − P10)   ________________  
 (P90 − P10)   ,  where  Pz  is the  zth  percentile growth rate. 

16 We take unconditional moments. Guvenen et al. (2013) and Guvenen, Ozkan, and Song (2013) also 
report how they change with age, with income level, and over the business cycle. This can be incorporated with  
age-dependent parameters that depend also on past shock realizations and on an aggregate shock. 
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A. Computational Approach

We use the recursive formulation of the planning problems   (6)   and  (11) . Here 
we provide a summary of our approach while the online Appendix contains further 
details.

The main problem is a finite-horizon discrete-time dynamic programming prob-
lem with a three-dimensional continuous state space. We solve it by value function 
iteration starting from the period before retirement,   T ˆ   − 1 . The present value of the 
resources required to provide promised utility over the remaining  T −  T ˆ   + 1  periods 
of retirement is added to the value function in period   T ˆ   − 1 . We approximate each 
value function with tensor products of orthogonal polynomials evaluated at their 
root nodes and proceed by backward induction. To solve each node’s minimization 
sub-problem efficiently, we use an implementation of interior-point algorithm with 
a trust-region method to solve barrier problems and an   l  1    barrier penalty function. 
Assumption 2 is satisfied trivially for the preferences and parameter values we chose 
above. We verify the increasing properties in Assumption 3 numerically. We com-
pute    w ˆ   0    such that   V  0   (  w ˆ   0  )  = 0  and compute the optimal allocations reported below 
by forward induction. The optimal labor and savings distortions are then computed 
from the policy functions using definitions   (13)   and   (14)  .

B. Results

We first discuss the optimal labor and savings distortions in the calibrated econ-
omy. Figure 2 shows typical distortions for representative histories. Each thick line 
in panel A plots   τ    t  y  (  θ 

–
     t−1 ,  θ t  )   at a given  t  for a history of past shocks    θ –

     t−1
  =  ( θ –

  ,  … ,  θ –
  )  .  

We chose   θ –
    for panel A so that an individual with a lifetime of   θ –

    shocks will have 
the average lifetime earnings,    1 _ 

 T ˆ  
    ∑ t=0   T ˆ  −1     y  t   (  θ 

–
     t )   where   y  t   (  θ 

–
     t )  =  θ –

    l    t   (  θ 
–
     t )   , approxi-

mately equal to the average US male earnings in 2005; panel C is the analogue 
with   θ –

    chosen so that the average lifetime earnings approximately equal twice 

Table 1—Calibrated Parameters of the Shock Process, Simulated Moments, and 
the Target Moments in the Data

Calibrated shock parameters

  μ 1      μ 3      υ 1      υ 2      p  1      p  2     μ   υ   a 

0.03 −0.47 0.22 2.64 0.71 0.15 0.17 5.59 2.73

Moments of distributions

Stochastic process Initial distribution

Mean SD Kurtosis Kelly’s Skewness P10 P90 P50 P90 P99

Simulated shock moments  ( θ t  ) 
0.010 0.46 10.15 −0.24 −0.47 0.49 10.41 11.13 12.07

Simulated equilibrium earnings moments  (  y  t  ) 
0.008 0.51 11.30 −0.20 −0.45 0.44 10.39 11.06 11.94

Data earnings targets   ( y  t  
data )  

0.009 0.52 11.31 −0.21 −0.44 0.47 10.06 10.76 11.71
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the US average.17 The distortions are plotted against current earnings,   y  t   (  θ 
–
     t−1 ,  θ t  )   

=  θ t    l    t   (  θ 
–
     t−1 ,  θ t  )  , measured on the horizontal axis in 1,000s of real 2005 dollars. The 

lines in panels B and D plot the corresponding values for   τ  t    s  (  θ 
–
     t−1 ,  θ t  )  . The thin lines 

in panels A and C display  f   (θ |  θ 
–
  )  .

Several insights emerge from examining the distortions in Figure 2. First, the opti-
mal labor distortions are highly nonlinear, with pronounced U-shape patterns. The 
U-shapes are centered around the expected realization of the shock conditional on 
past earnings, as indicated by the peaks of the conditional distributions. The individ-
uals who experienced higher realizations of the shocks in period  t − 1  are expected 
to have higher productivity in period  t  and the U-shape of their labor distortions is 
shifted to the right. Since the individuals in panel C have a history of higher earnings 
than the individuals in panel A, the U-shapes in panel C are centered around higher 

17 The average lifetime earnings are $53,934 for the history in panel A and $108,990 in panel C. According to 
the US Census, the average male earnings in 2005 were $54,170 (see US Census Bureau, Historical Income Tables, 
Table P-12 at https://www.census.gov/hhes/www/income/data/historical/people/). 
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Figure 2. Optimal Distortions at Selected Periods

Notes: Panels A and B have a history of   θ 
–
    shocks chosen so that an individual with a lifetime of   θ 

–
    shocks will have 

the average lifetime earnings approximately equal to the average US male earnings in 2005; panels C and D are the 
analogues with   θ 

–
    chosen so that the average lifetime earnings approximately equal twice the US average.
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earnings than those in panel A. The optimal savings distortions,  panels B and D, are 
similarly nonlinear and non-monotone but the non-monotonicities are much less 
pronounced than in labor distortions.

Proposition 1 and Corollary 1 show that an understanding of the economic 
forces behind these observations can be gained by examining our decomposition 
(17). Figure 3 illustrates the decomposition for the histories shown in Figure 2. 
The intratemporal terms   B  t    and   C  t    are shown in panels A and C (  A    t    is constant given 
the preferences); panels B and D show the intertemporal terms   D   t  .  Many of the 
insights that emerge from Figure 3 can be understood from our analysis in Section 
II. The intertemporal term   D  t    converges to zero at a geometric rate as labor earnings 
increase (cf. Proposition 1). The hazard term   B   t    first follows a U-shape and then 
declines to zero but at a much slower rate (see Corollary 1), while   C   t    increases. The 
U-shaped pattern of the hazard term is driven by the high kurtosis of the calibrated 
shock process, implied by the high kurtosis in the labor earnings in the data. The 
behavior of terms   B  t    and   C  t    and their implications for the optimal labor distortions 
are very similar to the quasilinear example in Figure 1, panels C and F, with the 
exception that   C   t    is not necessarily monotone. The sum of the intratemporal compo-
nent   (1 + ε)   B    t    C  t    and the intertemporal component     τ t−1   _ 1 −  τ t−1  

    D  t    implies the U-shaped 
patterns of the labor distortions in Figure 2. Finally, note that all three terms   B  t   ,    C   t    , 
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Figure 3. The Decomposition of Optimal Labor Distortions

Notes: Panels A and B have a history of   θ –   shocks chosen so that an individual with a lifetime of   θ –   shocks will have 
the average lifetime earnings approximately equal to the average US male earnings in 2005; panels C and D are the 
analogues with   θ –   chosen so that the average lifetime earnings approximately equal twice the US average.
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and   D    t    depend little on individual age  t  and are mainly driven by the past realiza-
tion of the shock. In the online Appendix we provide additional illustrations of the 
decompositions.

Figure 2 also shows that the labor distortions increase with age at low and medium 
labor earnings but do not depend on age at high labor earnings. Farhi and Werning 
(2013) showed that it is optimal for labor distortions to increase with age on average 
(see also our discussion around equation (21)), while our Corollary 1 qualifies this 
insight by showing that the increase happens only for shocks in the left tail.

The second insight that emerges from examining distortions in Figure 2 is that 
their quantitative magnitude is relatively high. The labor distortions for high shocks 
often exceed 70 percent. Savings distortions are defined as a wedge in the gross 
return to capital (i.e., interest return plus principle) and for high realizations of 
shocks can be as high as 2 percent. We could equivalently define savings distortions 
on the net capital return  R − 1;  given our parametrization of  R  the net savings distor-
tion is approximately 50 times the gross savings distortion. In the online Appendix 
we report robustness checks for the recalibrated economy with  ε = 1  and  ε = 4.  
The labor distortions remain high, especially in the tails.

To examine the magnitudes of the optimal distortions more systematically we 
compute a weighted average of labor distortions that a person with a realization of 
a shock   θ t    experiences in period  t.  In particular, we define average distortions as 
   τ –   t    i  ( θ t  )  ≡  ∫  Θ   t−1       τ    t  i  ( θ   t−1 ,  θ t  )  dF ( θ   t−1 )   for  i ∈  {y, s} .  In Figure 4 we show these distor-
tions plotted against labor earnings    y –  t   ( θ t  )  =  θ t     l 

–
  t   ( θ t  )  , where    l 

–
  t   ( θ t  )   is the weighted 

average across the simulated histories for a given  t . At high earnings these average 
labor distortions are about 75 percent and are virtually independent of  t.  At average 
earnings they vary from about 25 percent early in life to about 65 percent late in life. 
Average savings distortions range from about 0.3 percent at average labor earnings 
to 2–2.5 percent at high earnings.

It is instructive to compare the quantitative predictions about the size of the opti-
mal labor distortions with the distortions that arise in a static model. Saez (2001) 
calibrated the distribution of skills in a static model using data on the cross-sectional 
distribution of labor earnings. The specification that is closest to ours is his Figure 5, 
Utilitarian criterion, utility type II. He finds that the optimal labor distortions are 
U-shaped, with the distortions at average earnings about 40–55 percent and at high 
earnings about 65–80 percent, depending on the chosen elasticity of labor supply. 
The cross-sectional distribution of labor earnings in our data and the magnitude of 
the average distortions in Figure 4 are similar.18 In our dynamic model these distor-
tions are history dependent and are similar to the distortions in the static model only 
on average. As we showed in Figure 2, the U-shapes in the dynamic economy are 
centered around the expected realization of earnings conditional on past earnings, 
while in the static model they are centered around the cross-sectional average labor 
earnings. In the dynamic economy, the planner also conditions the average labor 
distortions on age and uses savings distortions.

18 Saez (2001) uses preference specification  ln (c) − ln (1 +    l   
1+κ  _ 1 + κ  )   and targets the compensated elasticity of 

labor supply  1/κ  rather than the Frisch elasticity that we use in our analysis. Saez (2001) reports optimal taxes for 
the compensated elasticities of 0.25 and 0.5. Our preference parametrization implies the compensated elasticity of 
0.33 in the static model. 
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The third insight that emerges from our analysis is that higher moments of the 
stochastic process for idiosyncratic shocks, such as kurtosis, have an important 
effect on both the shape and the size of the optimal distortions. To illustrate their 
effect, we compare our baseline simulations with the simulations in the economy 
where we set the shock process to be lognormal with the same mean and variance 
as our baseline. Figure 5 compares the distortions with the lognormal shocks (thick 
lines) to the baseline mixture case (thin lines), for a history of low earnings in panels 
A and B and for the average distortions in panels C and D.

Since the baseline uses a mixture of lognormals, the hazard ratios and the labor 
distortions with both lognormal and mixture distributions are proportional to  1/ln  θ  
in the right tail. Away from their asymptotic limit, the labor distortions behave very 
differently in the two cases. While the labor distortions are U-shaped in the mix-
ture case, they are mildly regressive in the lognormal case. This implies different 
responses to earnings shocks: the labor distortions typically increase in response to 
a positive earnings shock in the baseline economy, while they decrease in the econ-
omy with lognormal shocks. The magnitudes of the distortions are also different, 
for example, at the annual labor earnings of $500,000 the average labor distortion is 
almost four times as large as in the lognormal case. The intuition for these  findings 
follows directly from our discussion of Figure 1. The differences in savings distor-
tions are much less significant in the two cases, as are the differences in lifetime 
average distortions,    1 _ 

 T ˆ  
     ∑ t=0   T ˆ  −1     ∫  Θ   t       τ    t  i  ( θ   t )  dF ( θ   t )   for  i ∈  {y, s}  : the average labor distor-

tions are 42.7 percent in the mixture case and 40.6 percent in the lognormal case; 
the average savings distortions are 0.6 and 0.5 percent respectively. In the online 
Appendix we illustrate the corresponding changes to earnings and consumption 
moments.

Finally, we quantify the importance of nonlinearities and history dependence 
emphasized above by computing welfare losses from using simpler, affine tax 
functions. We consider an equilibrium in the economy with linear taxes on capital 
and labor income, reimbursed lump-sum to all agents. In the first experiment the 
tax rates are the same for all ages and are chosen to maximize ex ante welfare. 
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Figure 4. Optimal Average Labor and Savings Distortions as Functions of Current Earnings  
at Selected Periods
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In the second experiment we allow tax rates to depend on  t  and set them to the 
age- t  average constrained-optimal labor and savings distortions,   ∫  Θ   t       τ    t  i  ( θ   t )  dF ( θ   t )   
for  i ∈  {y, s}  . In each case, we compute consumption equivalent welfare loss,  Δ  , 
from using a simple policy instead of the constrained optimal policies, given by 
  E  −1     ∑ t=0  T      β   t  U ( c  t  ce  × Δ,  l  t  ce )  =  E  −1    ∑ t=0  T     β   t  U ( c  t  ,  l   t  )   where   (c, l)   are constrained-op-
timal allocations and   ( c   ce ,  l   ce )   are equilibrium choices given the simple policy.

In the baseline mixture case, the policy of age-independent taxes leads to the 
welfare loss of 3.64 percent of consumption, with the labor tax of 43.1 percent, quite 
close to the lifetime average, and the capital tax of 0.05 percent. The age-dependent 
tax rates reduce the welfare loss to 1.81 percent. Higher moments of the shock pro-
cess have a significant impact on the losses. Repeating the same two experiments in 
the lognormal case, the welfare losses from age-independent policies are 0.51 per-
cent, with the labor tax of 41.2 percent and the capital tax of 0.07 percent, while the 
age-dependent policies reduce the loss to 0.30 percent. The smaller welfare changes 
with lognormals shocks are perhaps not surprising in light of the analysis of Figure 5 
where linear taxes appear to be better approximations for the optimal distortions.
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Figure 5. Optimal Distortions with and without Higher Moments

Notes: The lognormal process (thick lines) has the same mean and variance as the mixture (thin lines). Panels A 
and B have a history of   θ –   shocks chosen so that an individual with a lifetime of   θ –   shocks will have the average life-
time earnings approximately equal to the average US male earnings in 2005; panels C and D are average distortions.
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IV. Conclusion

This paper takes a step toward the characterization of the optimal labor and sav-
ings distortions in a life-cycle model. Our analysis focuses on the distortions in 
fully optimal allocations, restricted only by the information constraint. The optimal 
allocations and distortions can be implemented as a competitive equilibrium with 
nonlinear taxes that depend on the current and past choices of labor supply and sav-
ings. Our approach is complementary to that of Conesa, Kitao, and Krueger (2009); 
Heathcote, Storesletten, and Violante (2014); or Kindermann and Krueger (2014) 
and others, who restrict attention to a priori chosen functional forms of tax rates as 
a function of income and optimize within that class. Informationally constrained 
optimum that we study provides an upper bound on welfare that can be attained with 
such taxes. The properties of the distortions in the constrained optimum can serve 
as a guidance in choosing simple functional forms for taxes that capture most of the 
possible welfare gains.
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