Skip to main content

Exchange coupling between silicon donors: The crucial role of the central cell and mass anisotropy

Author(s): Pica, G; Lovett, BW; Bhatt, Ravindra N; Lyon, Stephon A

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1tt2x
Abstract: Donors in silicon are now demonstrated as one of the leading candidates for implementing qubits and quantum information processing. Single qubit operations, measurements, and long coherence times are firmly established, but progress on controlling two qubit interactions has been slower. One reason for this is that the interdonor exchange coupling has been predicted to oscillate with separation, making it hard to estimate in device designs. We present a multivalley effective mass theory of a donor pair in silicon, including both a central cell potential and the effective mass anisotropy intrinsic in the Si conduction band. We are able to accurately describe the single donor properties of valley-orbit coupling and the spatial extent of donor wave functions, highlighting the importance of fitting measured values of hyperfine coupling and the orbital energy of the 1s levels. Ours is a simple framework that can be applied flexibly to a range of experimental scenarios, but it is nonetheless able to provide fast and reliable predictions. We use it to estimate the exchange coupling between two donor electrons and we find a smoothing of its expected oscillations, and predict a monotonic dependence on separation if two donors are spaced precisely along the [100] direction.
Publication Date: 6-Jun-2014
Electronic Publication Date: 6-Jun-2014
Citation: Pica, G, Lovett, BW, Bhatt, RN, Lyon, SA. (2014). Exchange coupling between silicon donors: The crucial role of the central cell and mass anisotropy. Physical Review B - Condensed Matter and Materials Physics, 89 (10.1103/PhysRevB.89.235306
DOI: doi:10.1103/PhysRevB.89.235306
Type of Material: Journal Article
Journal/Proceeding Title: Physical Review B - Condensed Matter and Materials Physics
Version: Author's manuscript



Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.