Skip to main content

Semidefinite programming approach for the quadratic assignment problem with a sparse graph

Author(s): Ferreira, Jose FS Bravo; Khoo, Yuehaw; Singer, Amit

To refer to this page use:
Abstract: The matching problem between two adjacency matrices can be formulated as the NP-hard quadratic assignment problem (QAP). Previous work on semidefinite programming (SDP) relaxations to the QAP have produced solutions that are often tight in practice, but such SDPs typically scale badly, involving matrix variables of dimension where n is the number of nodes. To achieve a speed up, we propose a further relaxation of the SDP involving a number of positive semidefinite matrices of dimension no greater than the number of edges in one of the graphs. The relaxation can be further strengthened by considering cliques in the graph, instead of edges. The dual problem of this novel relaxation has a natural three-block structure that can be solved via a convergent Alternating Direction Method of Multipliers in a distributed manner, where the most expensive step per iteration is computing the eigendecomposition of matrices of dimension . The new SDP relaxation produces strong bounds on quadratic assignment problems where one of the graphs is sparse with reduced computational complexity and running times, and can be used in the context of nuclear magnetic resonance spectroscopy to tackle the assignment problem.
Publication Date: Apr-2018
Electronic Publication Date: 17-Nov-2017
Citation: Ferreira, Jose FS Bravo, Khoo, Yuehaw, Singer, Amit. (2018). Semidefinite programming approach for the quadratic assignment problem with a sparse graph. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 69 (677 - 712. doi:10.1007/s10589-017-9968-8
DOI: doi:10.1007/s10589-017-9968-8
ISSN: 0926-6003
EISSN: 1573-2894
Pages: 677 - 712
Type of Material: Journal Article
Version: Author's manuscript

Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.