Skip to main content

The arithmetic Hodge index theorem for adelic line bundles

Author(s): Yuan, Xinyi; Zhang, Shou-Wu

To refer to this page use:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYuan, Xinyi-
dc.contributor.authorZhang, Shou-Wu-
dc.identifier.citationYuan, Xinyi, Zhang, Shou-Wu. (2017). The arithmetic Hodge index theorem for adelic line bundles. MATHEMATISCHE ANNALEN, 367 (1123 - 1171. doi:10.1007/s00208-016-1414-1en_US
dc.description.abstractIn this paper, we prove index theorems for integrable metrized line bundles on projective varieties over complete fields and number fields respectively. As applications, we prove a non-archimedean analogue of the Calabi theorem and a rigidity theorem about the preperiodic points of algebraic dynamical systems.en_US
dc.format.extent1123 - 1171en_US
dc.relation.ispartofMATHEMATISCHE ANNALENen_US
dc.rightsAuthor's manuscripten_US
dc.titleThe arithmetic Hodge index theorem for adelic line bundlesen_US
dc.typeJournal Articleen_US

Files in This Item:
File Description SizeFormat 
hodge_I.pdf521.9 kBAdobe PDFView/Download

Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.