Skip to main content

Concordance homomorphisms from knot Floer homology

Author(s): Ozsvath, Peter Steven; Stipsicz, Andras I; Szabo, Zoltan

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1kq2c
Abstract: We modify the construction of knot Floer homology to produce a one-parameter family of homologies tHFK for knots in S-3. These invariants can be used to give homomorphisms from the smooth concordance group C to Z, giving bounds on the four-ball genus and the concordance genus of knots. We give some applications of these homomorphisms. (C) 2017 Elsevier Inc. All rights reserved.
Publication Date: 31-Jul-2017
Electronic Publication Date: 13-Jun-2017
Citation: Ozsvath, Peter S, Stipsicz, Andras I, Szabo, Zoltan. (2017). Concordance homomorphisms from knot Floer homology. ADVANCES IN MATHEMATICS, 315 (366 - 426. doi:10.1016/j.aim.2017.05.017
DOI: doi:10.1016/j.aim.2017.05.017
ISSN: 0001-8708
EISSN: 1090-2082
Pages: 366 - 426
Type of Material: Journal Article
Journal/Proceeding Title: ADVANCES IN MATHEMATICS
Version: Author's manuscript



Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.