Skip to main content

The Dominance of Neutrino-driven Convection in Core-collapse Supernovae

Author(s): Murphy, Jeremiah W; Dolence, Joshua C; Burrows, Adam S

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1k707
Abstract: Multi-dimensional instabilities have become an important ingredient in core-collapse supernova (CCSN) theory. Therefore, it is necessary to understand the driving mechanism of the dominant instability. We compare our parameterized three-dimensional CCSN simulations with other buoyancy-driven simulations and propose scaling relations for neutrino-driven convection. Through these comparisons, we infer that buoyancy-driven convection dominates post-shock turbulence in our simulations. In support of this inference, we present four major results. First, the convective fluxes and kinetic energies in the neutrino-heated region are consistent with expectations of buoyancy-driven convection. Second, the convective flux is positive where buoyancy actively drives convection, and the radial and tangential components of the kinetic energy are in rough equipartition (i.e., Kr ∼ Kθ + Kφ). Both results are natural consequences of buoyancy-driven convection, and are commonly observed in simulations of convection. Third, buoyant driving is balanced by turbulent dissipation. Fourth, the convective luminosity and turbulent dissipation scale with the driving neutrino power. In all, these four results suggest that in neutrino-driven explosions, the multi-dimensional motions are consistent with neutrino-driven convection.
Publication Date: 1-Jul-2013
Electronic Publication Date: 14-Jun-2013
Citation: Murphy, Jeremiah W, Dolence, Joshua C, Burrows, Adam. (2013). The Dominance of Neutrino-driven Convection in Core-collapse Supernovae. apj, 771 (52 - 52. doi:10.1088/0004-637X/771/1/52
DOI: doi:10.1088/0004-637X/771/1/52
Type of Material: Journal Article
Journal/Proceeding Title: Astrophysical Journal
Version: Final published version. This is an open access article.



Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.