Skip to main content

Analysis of Trajectory Entropy for Continuous Stochastic Processes at Equilibrium

Author(s): Haas, Kevin R; Yang, Haw; Chu, Jhih-Wei

To refer to this page use:
Abstract: The analytical expression for the trajectory entropy of the over-damped Langevin equation is derived via two approaches. The first route goes through the Fokker-Planck equation that governs the propagation of the conditional probability density while the second method goes through the path integral of the Onsager-Machlup action. The agreement of these two approaches in the continuum limit underscores the equivalence between the partial differential equation and the path integral formulations for stochastic processes in the context of trajectory entropy. The values obtained using the analytical expression are also compared with those calculated with numerical solutions for arbitrary time resolutions of the trajectory. Quantitative agreement is clearly observed consistently across different models as the time interval between snapshots in the trajectories decreases. Furthermore, analysis of different scenarios illustrates how the deterministic and stochastic forces in the Langevin equation contribute to the variation in dynamics measured by the trajectory entropy
Publication Date: 17-Jul-2014
Citation: Haas, Kevin R, Yang, Haw, Chu, Jhih-Wei. "Analysis of Trajectory Entropy for Continuous Stochastic Processes at Equilibrium" The Journal of Physical Chemistry B, (28), 118, 8099 - 8107, doi:10.1021/jp501133w
DOI: doi:10.1021/jp501133w
ISSN: 1520-6106
EISSN: 1520-5207
Pages: 8099 - 8107
Type of Material: Journal Article
Journal/Proceeding Title: The Journal of Physical Chemistry B
Version: This is the author’s final manuscript. All rights reserved to author(s).

Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.