Skip to main content

Fast, low-power manipulation of spin ensembles in superconducting microresonators

Author(s): Sigillito, AJ; Malissa, H; Tyryshkin, AM; Riemann, H; Abrosimov, NV; et al

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1067w
Abstract: We demonstrate the use of high-Q superconducting coplanar waveguide (CPW) microresonators to perform rapid manipulations on a randomly distributed spin ensemble using very low microwave power (400 nW). This power is compatible with dilution refrigerators, making microwave manipulation of spin ensembles feasible for quantum computing applications. We also describe the use of adiabatic microwave pulses to overcome microwave magnetic field (B1) inhomogeneities inherent to CPW resonators. This allows for uniform control over a randomly distributed spin ensemble. Sensitivity data are reported showing a single shot (no signal averaging) sensitivity to 107 spins or 3×104spins/√Hz with averaging.
Publication Date: Jun-2014
Electronic Publication Date: Jun-2014
Citation: Sigillito, AJ, Malissa, H, Tyryshkin, AM, Riemann, H, Abrosimov, NV, Becker, P, Pohl, H-J, Thewalt, MLW, Itoh, KM, Morton, JJL, Houck, AA, Schuster, DI, Lyon, SA. (2014). Fast, low-power manipulation of spin ensembles in superconducting microresonators. Applied Physics Letters, 104 (10.1063/1.4881613
DOI: doi:10.1063/1.4881613
Type of Material: Journal Article
Journal/Proceeding Title: Applied Physics Letters
Version: Author's manuscript



Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.