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Abstract

In multiple studies DNA methylation has proven to be an accurate biomarker of age. To

develop these biomarkers, the methylation of multiple CpG sites is typically linearly com-

bined to predict chronological age. By contrast, in this study we apply the Universal Pace-

Maker (UPM) model to investigate changes in DNA methylation during aging. The UPM

was initially developed to study rate acceleration/deceleration in sequence evolution.

Rather than identifying which linear combinations of sites predicts age, the UPM models

the rates of change of multiple CpG sites, as well as their starting methylation levels, and

estimates the age of each individual to optimize the model fit. We refer to the estimated age

as the “epigenetic age”, which is in contrast to the known chronological age of each individ-

ual. We construct a statistical framework and devise an algorithm to determine whether a

genomic pacemaker is in effect (i.e rates of change vary with age). The decision is made by

comparing two competing likelihood based models, the molecular clock (MC) and UPM.

For the molecular clock model, we use the known chronological age of each individual and

fit the methylation rates at multiple sites, and express the problem as a linear least squares

and solve it in polynomial time. For the UPM case, the search space is larger as we are fit-

ting both the epigenetic age of each individual as well as the rates for each site, yet we suc-

ceed to reduce the problem to the space of individuals and polynomial in the more

significant space—the methylated sites. We first tested our algorithm on simulated data to

elucidate the factors affecting the identification of the pacemaker model. We find that, pro-

vided with enough data, our algorithm is capable of identifying a pacemaker even when a

weak signal is present in the data. Based on these results, we applied our method to DNA

methylation data from human blood from individuals of various ages. Although the improve-

ment in variance across sites between the UPM and MC was small, the results suggest that

the existence of a pacemaker is highly significant. The PaceMaker results also suggest a

decay in the rate of change in DNA methylation with age.
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Author Summary

DNA methylation is an important component of the epigenetic code that defines and
maintains the state of cells. Recently, it has been found that certain sites in the genome
undergomethylation changes at different rates during aging. The seminal work of Steve
Horvath found that the methylation of a couple hundred CpG sites could be linearly com-
bined to accurately predict the age of an individual in a number of tissues. Such a pattern
resembles theMolecular Clock (MC) concept prevailing in molecular evolution, which
suggests that there are sites in the genome that change linearly with age. In this work, we
adapt theUniversal PaceMaker (UPM)model to the setting of DNA methylation changes
during aging. UPM relaxes the rate constancy of MC and was found to provide a better
statistical explanation for genome evolution across the entire tree of life. This adaptation
requires the solution of a complex optimization problem. Nevertheless, in a series of obser-
vations we show that the problem can be solved efficiently under the MCmodel and
slightly less efficiently under the UPMmodel. This allows us to solve problems of non-triv-
ial size. We chose as a proof of concept to analyze DNA methylation data collected from
the blood of humans of different ages. Our results show that, similarly to genome evolu-
tion, the UPM provided an improvement of about 2% in the fit to the data. The statistical
significance of this improvement is very high. Although tested on a small data set, this
improvement demonstrates that the UPMmore accurately captures age related DNA
methylation changes than the MCmodel.

Introduction

DNA methylation is an important component of the epigenetic code that defines and main-
tains the state of cells [1–3]. Mammalian cells contain three DNA methyltransferases that pref-
erentially methylate CpG dinucleotides. These enzymes faithfully maintain cytosine
methylation patterns during cell division. However, as cells undergo differentiation, from stem
cells to mature cells, the patterns of DNA methylation change substantially, and help define the
changing cellular states [4]. The genomic profiles of DNA methylation across multiple cell
types have been defined during the past few years using techniques such as bisulfite sequencing
and DNA methylation arrays, that allow one to measure the methylation state of many cyto-
sines in the genome [5]. Consequently, it has been shown that DNA methylation also changes
as organisms age [6–12].
The seminal work of Steve Horvath [13] has identified three hundred CpG dinucleotides,

whosemethylation state can be used to accurately predict the age of an individual. The epige-
netic clock is now widely used in aging research and is far more accurate than alternative
approaches that rely on the measurement of telomere lengths or gene expression. The Horvath
epigenetic clockmodel uses a linear combination of the methylation status of several hundred
sites to predict the age of an individual. It also uses a nonlinear transformation to modify the
ages of young individuals (less than 20 years), while leaving the ages of adults untransformed.
Here we try to develop a more general formalism for modeling changes in DNA methylation

during aging. To this end, we use the universal pacemaker (UPM or simply pacemaker—PM)
of genome evolution [14, 15], which was devised in the setting of molecular evolution in order
to relax the evolution rate constancy imposed by the molecular clock (MC) hypothesis [16].
Under UPM, the relative evolutionary rates of all genes remain nearly constant (i.e constant
pairwise ratio) whereas the absolute rates can change arbitrarily (See Fig 1 for illustration). It
was shown on several taxa groups spanning the entire tree of life that the UPMmodel describes
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the evolutionary process better than the traditional molecular clock model [14, 17, 18]. The
UPMmodel relies on a statistical framework encompassing simultaneously all evolving genes
in genomes, and across the entire tree of life, therefore making it doubly universal.
Here we propose to adapt the UPM to model changes in DNA methylation during aging,

making no a priori assumption about the relationship between chronological and epigenetic
time, i.e. linearity in time as asserted by the MCmodel. The UPM is one degree of freedom
more relaxed than MC in the sense that it still requires rate uniformity of a site among all indi-
viduals, yet it allows the individual’s aging rate to play a role. By relaxing the constraint that
epigenetic age is linear with chronological age, we can explore a rich parameter landscape, and
identify complex nonlinearities using the UPM formalism. Our goal is not only to develop site
specificmodels of changes in DNA methylation as a population ages, but also to discover the
nonlinearities in the rates of change. This richness has its cost in terms of computational inten-
sity. In general, statistical analysis and in particular the approches we pursue here—maximum

Fig 1. Molecular clock vs Universal PaceMaker. (a) Under the Molecular Clock (MC) model, methylation

rates of sites differ among each other but are constant in time. (b) By contrast, under the Universal

PaceMaker (UPM) model (right), rates may vary during with time but the pairwise ratio between sites rates

remains constant.

doi:10.1371/journal.pcbi.1005183.g001
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likelihood (ML) solutions—are computationally intensive [19]. However, although the current
setting, methylation modeling, is more complex than the evolutionarymodel considered in
[14] due to an additional array of variables to be optimized, under the MCmodel we were able
to formalize it as a linear least squares, allowing us to obtain a closed form solution in polyno-
mial time. Under the PMmodel, we show that no closed form solution is achievable. However,
through a series of observations, we could reduce the search space significantly to the degree
that the heuristic search, done by a fast optimization method, is performed only in the, rela-
tively small, space of individuals. The rest of the search is polynomial is the space of methyla-
tion sites, hence enabling us to analyze problems of non-negligible size. Although the focus of
this work is on the description of the algorithm, such as the model formulation and the statis-
tics involved, we also demonstrate its performance in a real dataset.We first applied this for-
malism in a simulation study to discover the effect of the parameters involved and their
interplay. Among other things, we show that the scheme is capable of identifying a pacemaker,
i.e. a deviation from linearity in time, even when the pacemaker signal is relatively faint, if
enough data is provided. Next we analyze a dataset of DNA methylation collected from the
blood of humans of different ages. The signal in these data is indeed fairly small, however, the
size of the data allows us to confidently infer coordinated, nonlinear changes in methylation.
Further analysis shows that the changes in the rates resemble the empirical transformations
used in the Horvath model.

Results

Our Results Section contains three parts: A likelihoodbased scheme to identify an effective PM
affecting the methylation sites, a simulation study to demonstrate the performance of this
scheme, and results on two human methylation datasets.

The Evolutionary Models

Our basic objects are a set ofm individuals and n methylation sites in a genome (or simply
sites). Each individual has an age, forming the set T of time periods {tj} corresponding to each
individual j’s age. Henceforth we will interchangeably refer to individuals with their age. Each
individual has a set of sites si undergoingmethylation changes at some characteristic rate ri.
Each site si starts at somemethylation start level s0

i . All individuals have all the sites si. As ri and
s0
i are characteristic of the site si, by the model, they are the same in all individuals. The latter
fact, links between same sites but across different individuals, but also between different sites
within and across individuals by the fact that sites generally maintain the same characteristic
rates across the whole population. Henceforth, we will index sites with i and individuals with j.
Now, let si,jmeasure the methylation level at site si in individual j after time tj. Hence, under

themolecular clockmodel, we expect: sij ¼ s0
i þ ritj. However, in reality we have a noise effect εi,

j that is added and therefore the observed value ŝij is

ŝij ¼ s0

i þ ritj þ εi;j: ð1Þ

Our goal is to find, given the input matrix Ŝ ¼ ½̂si;j�, the maximum likelihood (ML) values for
the variables ri and s0

i for 1� i� n. For this purpose, we assume a statistical model for εi,j by
assuming that it is normally distributed, εi,j * N(0, σ2).
In contrast to the MC, in the UPMmodel we do not just use the given chronological age but

estimate the age of each individual. Therefore under the UPMwe must find the optimal values
of s0

i , ri, and tj. The solution to this optimization is described in detail below. We note that the
deviation between the chronological age and the estimate epigenetic age under the UPM results
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is an age difference which, when positive, we denote as age acceleration, and when negative as
age deceleration.

Identifying Methylation Rate Acceleration/Deceleration

Our first result is a maximum likelihood (ML) scheme to detect a coordinated, or rather
genome wide change in methylation rate under UPM.We note that such a change is distinct
from a single, uncoordinated, site change. We start with an overviewof the approach.
Two competitive explanations (i.e. likelihood functions) are developed, in which one (MC)

is restricted to linearity with time by estimating a constant rate of methylation at each site, and
using the given chronological age of each individual. The competing, relaxed, model (UPM)
has no such restriction, and we estimate an “epigenetic” age for each individual. By definition,
the ML solution under the relaxed model cannot be worse than the constrainedmodel. There-
fore, in order to compare the approaches, we use the likelihood ratio test that penalizes the
UPMmodel proportionally to the loss of parameters in the MCmodel. In the Methods section
we prove that under our model, the ML solution is equivalent to minimizing a quantity
denoted as the residual sum of squares, RSS. The computational question of how we solve the
problem, i.e. minimizing the RSS, under the two models is unique to this framework and hence
we describe it here in the Results section below.

Minimizing RSS. In the statistical framework defined in the Methods section, we showed
that minimizing RSS is equivalent to maximizing the likelihood function L. In particular the
ML RSS,dRSS, is used for computing χ2. We now show how we minimize RSS. RSS is a polyno-
mial over the variables ri and s0

i where everymonomial in the RSS stands for an entry in our
input matrix Ŝ, that is ŝi;j, and is of the form:

ε2

i;j ¼ ðŝi;j � tjri � s0

i Þ
2
; ð2Þ

where in our case the inputs are the ŝi;j and tj and the variables sought are ri and s0
i , for every

i� n (our set of sites).
In order to find the critical points of the RSS, we find the gradient of the RSS, that is the par-

tial derivative of the RSS with respect to every such variable. The critical points are the points
in the 2n spaces where all these partial derivatives simultaneously vanish [20]. Finding these
points is normally carried out using some numerical method.
In our case however, the special structure of the problem allows us a more efficient solution.

A least squares (LS) solution is called linear if the residuals are linear in all unknowns. In this
case LS can be formalized in a matrix format which has a closed form solution (given that the
column of the matrix are linearly independent). Under this formalization the optimal (ML)
solution is given by the vector b̂ as follows:

b̂ ¼ XTXð Þ
� 1XTy; ð3Þ

where X is a matrix over the variable’s coefficients in the problem, y is a vector holding the
observedvalues—in our case the entries of Ŝ, and the RSS equation can be written such that for
every row i in X, yi − ∑j Xi,j βj is a component in the RSS.
Recall that for m subjects, our RSS containsmn components each of which corresponds to

an entry in Ŝ in the form ŝi;j � tjri � s0
i where ŝi;j and tj are input parameters. This leads to the

following observation:
Observation0.1 Let X be a mn × 2n matrix whose kth row corresponds to the (i, j) entry in S,

the first n variables of β are the ri’s and the second n variables are the s0
i ’s, and the im + j entry in

y contains si,j (see Fig 2). Then, if we set the k row in X all to zero except for tj in the i’th entry of
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the first half and 1 in i’th entry of the second half, we obtain the desired system of linear equa-
tions (see again illustration for row setting in Fig 2).

Proof: The proof follows trivially. The k component in the RSS that corresponds to the (i, j)
entry in Ŝ (and also to row k in X), is of the form

ŝi;j � tjri � s0

i : ð4Þ

Therefore, by the definition of X, β, and y, the observation follows.
To complement the task, we assign the values obtained in b̂ in Eq 3 for all ri and s

Þ

i in the
RSS and obtain the ML value.

Solving the RSS under the PacemakerModel. Recall that under the UPMmodel, we
allow sites in an individual to accelerate or decelerate their methylation rate arbitrarily. Sites
start at their characteristic rate ri, but in theUPM we no longer have a constant rate for the site
si in all individuals, and at all times. Instead, we have the instantaneous rate rt

i;j for site si in indi-
vidual j at time τ, where τ is less then tj—the age of individual j. We also use ri,j to denote the
average rate of site i at individual j:

ri;j ¼
si;j � s0

i

tj
; ð5Þ

and we note that this average rate ri,j can be measured (as opposed to the instantaneous rate at
the site and individual).
In particular, relaxation of the constant rate property invalidates use of the closed form solu-

tion for our problem as in Eq (3), partially since the ordering of rates, or precisely the ratios
between them, imposed by the closed form solution is not necessarily the ML solution. The lat-
ter implies that we will have to search a very large space of all possible parameter values in
order to arrive to the ML solution. The following, seemingly counterintuitive, theorem shows
that we can do much better.

Fig 2. The mn × 2n matrix X that is used in our closed form solution to the MC case. Every row

corresponds to a component in the RSS polynomial and the corresponding entries (ith and i + nth) in that row

are set to tj and 1 respectively.

doi:10.1371/journal.pcbi.1005183.g002
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Theorem 0.2 Under the UPMmodel, it is enough to search only the space of individual’s
ages—tj’s.
Theorem 0.2 seems counterintuitive since the individual’s ages are fixed, however recall that

under the UPMmodel we operate under pacemaker ticks.
The proof of Theorem 0.2 relies on the fundamental property of the UPMmodel that asserts

rate correlation among sites. Hence, while under this model we relax the constant rate require-
ment, we still require that if a site at an individual changes its rate, then all sites at that individ-
ual change their rate by the same proportion.We prove the theorem.

Proof:We first show the following simple observationwhose proof is given in S1 Text:
Observation0.3 For two methylation sites si and si0 with characteristic rates ri and ri0, let

ρi,i0 = ri/ri0. Then for any individual j and time τ� tj holds

ri;i0 ¼ rt

i;j=r
t

i0 ;j: ð6Þ

Observation 0.3 is important as it shows that ρi,i0 is independent of any time or individual.We
now use the following definition. For a site si and individual j, let r�i;j be the ML value for ri,j,
that is, the value ri,j takes under the ML solution to the RSS.We note that since ri,j changes
many times through the life of individual j and hence there is no real such r�i;j rather r

�
i;j repre-

sents the weighted average, or the integral over possible trajectory of ri,j. Also recall that the
corresponding (i, j) component in our RSS looks

ε2

i;j ¼ ð̂si;j � tjri;j � s0

i Þ
2
; ð7Þ

and since ri,j appears only in that component, we could set

r�i;j ¼
ŝi;j � s0

i

tj
; ð8Þ

and then (after derivation) all RSS components vanish. However the following observation
(whose proof is deferred to the S1 Text) shows that this may violate the UPMmodel.

Observation0.4 Setting

r�i;j ¼
ŝi;j � s0

i

tj
; ð9Þ

at every component of the RSS, may violate the constant ratio between rates assumption.
The following lemma is instrumental to our procedure of finding the ML solution.
Lemma0.5 Let r�i;j the ML value for ri,j. Also let d

�

i;j ¼ r�i;j=ri be the change in proportion from
ri to r�i;j. Then the ML solution is obtained if ri,j is intact (i.e. remains at its initial value ri) but the
time tj is stretched or shrunk by d

�

i;j.
The proof to the lemma is given in the S1 Text. We now clarify two points. First, tj appears in

several components while d
�

i;j may be different in every such component (pertaining to different
i’s). Nevertheless we show in the proof that all these d

�

i;j are the same. Second, from the lemma it
may appear as if we know ri, so we can set ri;j ¼ r�i . This is incorrect as we explain in the proof.
The importance of Lemma 0.5 is that it reduces the search space of the ML solution substan-

tially as we only need to search in the (m dimensional) space of times (T) that is typically
smaller than n.
Another important feature of the PM solution, is that once we relax the times tj the optimi-

zation is not linear anymore. Here we simply pursued the following straightforward strategy.
Assume we restrict a subset of the variables in the problem to their ML values under the global,
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unrestricted solution. Next, we look for the local, restricted,ML solution, by optimizing the
rest of the variables. Then we obtain the same globalML solution as the unrestricted problem.
This completes the proof of Theorem 0.2.
In practice, the algorithm proceeded as follows.We performed a heuristic search in the

(restricted) space of T. For every value T0 in that space that was offered by the optimization
procedure, we performed the fast analytic LS solution of Eq (3) to obtain the ML values of the
rest of the variables, but constrained to the value T0. We proceeded this way until the ML point
is obtained, i.e. the point under which RSSwas minimised. Let T� be the point in them dimen-
sional space corresponding to the ML values of T. By the above, the closed form algebraic solu-
tion, as is done for the MC case, will find the ML values for the rest of the variables.
To perform the LS optimization, we used the function fmin_slsqp implemented by the

LAPACK software [21], which is found at the scipy.optimize package of Python that minimizes
a function using sequential least squares programming.

Simulation Study

In order to test our method we first conducted a simulation study as we now describe. The goal
was to examine the effect of the various parameters on the performance of the method, i.e. its
capability to distinguish between a PM and the MC. Performance was measured by means of
the p-value of the likelihood ratio test (LRT). We now describe the study’s parameters. Our
model is comprised of anm-dimensional vector times Twhere tj corresponds to the jth individ-
ual’s age that we draw randomly to obtain variation in individuals’ ages. Next we have two n-
dimensional vectors, rates r andmethylation starting position s0, where ri and s0

i correspond to
the ith site’s methylation rate and methylation starting position respectively. Both vectors were
drawn randomly. These are the base parameters used to generate the input matrix Ŝ. However
recall that our goal was to test the sensitivity of our algorithm to distinguish between a PM and
a MC. Also recall that by Lemma 0.5, a PM is simply another linear correlation to time periods
t0j only that these correspond to the PM ticks and each such PM ticks at an arbitrary rate.
Therefore, to simulate the PM perturbation of the astronomical clock, we perturbed each tj by
some εj (i.e. multiplied by 1 + εj) where εj � Nð0; s2

t Þ. Hence, the constant parameters of the
PMmodel are the (perturbed) times t0j and the original ri and s

0
i values. So by our model we

have si;j ¼ s0
i þ rit0j . Finally, to simulate biological noise, we sampled ŝi;j � Nð0; s2

s Þ.

Given the matrix Ŝ and the time vector T, we ran both algorithms on that input and com-
pared the results. The MCmodel fit the site rates and methylation start levels while adhering to
the times in T while the PMmodel considered only the matrix Ŝ and disregarded the times in
T. Bothmodels returned their RSS’s. Since under PM the times T0 are also inferred, we used
LRT to compare between the models withm degrees of freedomwhich is the size of the vector
T0. The score of a single run is the p-value of the χ2 test.
Since that setting is non trivial, we now discuss the parameters and their interpretation.

Obviously, the signal to the method comes only if there is any variation in the pacemaker ticks
with respect to the chronological clock, since otherwise both the PM procedure and the MC
procedure will converge to the same values and will produce the same error (RSS). Therefore
our first parameter, the PM variance s2

t , that determines the size of the deviation of the PM
from chronological time, is distinct from other parameters. Indeed we divided the study into
two parts in which different values were used and the differences are significant. The second
parameter is the variance at each site, or simply the amount of pure noise in the signal. Our
experiments show that this is a major factor inhibiting the identification of the PM. The last
two parameters are the number of sites that are included and the number of individuals. The
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results of our simulations are presented in Figs 3 and 4. In all figures, the y axis represents the
success rate in terms of the p-value returned from the LRT. The x axis represents the noise s2

s ,
the site variance.
We now explain the results. The graphs in Fig 3 correspond to experiments with weaker PM

signals, s2
t ¼ 0:1. Fig 3(a) corresponds to 50 individuals. The graph contains three curves that

correspond to individuals with {50, 70, 100} sites (colors blue, red, and green respectively).
That is, each experiment is done over a population of 50 individuals, each with 50 (alternatively
70 or 100) methylation sites. Additionally, each individual is associated with a PM that modi-
fies the methylation rate of that individual. That PM rate distributes, IID at each individual,
normally with variance s2

t ¼ 0:1. The x-value of a point represents the background noise we
apply to each site, that also distributes normally and IId at each individual and site, with

Fig 3. Performance of the identification under weaker PM signal (variance) s2
t ¼ 0:1. p-value of the χ2 is

plotted versus the amount of noise. Each curve represent a different number of sites from {10, 20 30} (a) 50

individuals (b) 100 individuals.

doi:10.1371/journal.pcbi.1005183.g003
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variance s2
s . The y-value of a point represents the relative number of times (or success fre-

quency) our scheme described in the Results section, was able to identify the PM (a PM always
exists but its signal may disappear due to confounding signals).
Let us focus on the curve in Fig 3(a) that corresponds to 50 sites (blue curve). It is shown

that for a small amount of noise, s2
s � 2, reconstruction quality is high but then it starts to

diminish with success rate less than 1/2 for s2
s � 7. We can also see that this trend is generally

true for each curve in the experimental study. We also see that there is an obvious benefit for
the inclusion of additional sites (red and green curves in Fig 3(a)) or individuals (Fig 3(b)).
Fig 4 depicts a situation in which a stronger PM signal s2

t ¼ 0:15 is embedded and the two
graphs represent experiments with 50 and 100 individuals as in Fig 3.
Here we can observe that the clear trend of a weak PM and small number of individuals, as

depicted in Fig 3(a), is not always maintained due to the high success rate and the stochastic
nature of the process. However, that general behavior is still maintained.

Fig 4. Performance of the identification under stronger PM signal (variance) s2
t ¼ 0:15. p-value of the χ2

is plotted versus the amount of noise. Each curve represent a different number of sites from {50, 70, 100} (a) 50

individuals (b) 100 individuals.

doi:10.1371/journal.pcbi.1005183.g004
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As can be seen, under this PM signal, the PM is identifiedwith a high rate, (� 85%), even
with only 50 individuals (Fig 4(a)) and 50 sites for all levels of noise. With 100 individuals (Fig
4(b)), 100 sites suffice for almost perfect identification.
We conclude this part by noting that for a fairly weak signal of PM and even under quite

high levels of noise, our procedure is capable of identifying the deviation of methylation rate
from linearity in time. This observation is critical when analyzing real data where we expect
that the signal is stronger and noise is weaker. We remark that due to the fairly involved setting
with many confounding parameters such as the amount of information (sites, individuals), sto-
chastic processes (PMs, sites), the same behavior as we observed in Figs 3 and 4, can be
observed for many other combinations of parameters.

Results on Human Methylation Data

Based on our simulation results, we next tested our approach on DNA methylation data previ-
ously reported in [22]. The data was collected using the Illumina 450K DNA methylation array
platform.
The resulting data matrix contains about 450,000 CpG sites measured across 657 human

individuals. In order to limit ourselves to a manageable size for parameter estimation of our
model we had to apply a selection criterion over the sites. We took the 300 sites with the maxi-
mum variance where the highest variance was 0.105 and the lowest around 0.0079. These sites
are more likely to be relevant for our model, as they have methylation levels that vary across
the population.We ran both algorithms on this reduced data. The following results were
obtained. The average error per entry in Ŝ underMC was 0.138. The UPM search algorithm
started from 10 random stating points all of them converged to the same ML point—0.135.
This is a mild improvement of about 2% indicating that sites are correlated and also there are
shifts from linear correlations to chronological time. The χ2 for these values under LRT is
3517.468. Since we had measurements across 300 individuals and under PM their values were
optimized, we had an additional 300 free variables (the “epigenetic” age) in the PMmodel with
respect to MC. Under the χ2 distribution with degree of freedom 300, in order to achieve a p-
value 0.01, a χ2 of 360 is required. Therefore the null hypothesis (MC) is rejected outright.
As illustrated, the PMmodel guarantees an optimal ranking between the rates of sites such

that the model likelihood is optimized. However there is one degree of freedomhere, allowing
us to assign an arbitrary value to one of the rates. This value in turn determines the values of
the rest of the variables. By picking one of our ML points we obtain an ML assignment to rates.
In order to compare howMC and PM rates behave under the different sites, we did the follow-
ing. For each of the sites, we calculated the ratio between its MC and PM rates. We sorted the
sites according to that value. After removing a few Eq (8) outliers at each side, we plotted this
result. Fig 5(a) depicts this result. We note a few facts about this ratio. The majority of the sites
(5/6) maintain the same sign (i.e. increasing or decreasingmethylation), about half (55%) of
these sites decelerate (i.e. ratio� 1).
Fig 5(b) shows an evenmore interesting phenomenon that corroborates certain conjectures.

The figure depicts the ratio between the chronological times (ages), taken as parameters (i.e.
fixed, unoptimized) under the MCmodel, versus ML times inferred under PM. The x axis is the
chronological time of the individual, meaning that ratios are presented from the youngest indi-
vidual at the left to the oldest at the right. The y axis is the MC/PM age ratio. A conspicuous
phenomenon emerging from this figure is the diminishing ratios between times (or equivalently
aging) as individual becomes older. Another property arising from that comparison, is that the
variance of this measure (MC/PM age ratio) in young ages is substantially larger than in more
advanced ages. We comment that this data set of [22] does not contain individuals of very
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young ages. Therefore we expect evenmore extreme contrasts in data that does include young
individuals, however this is beyond the scope of the current work and is left for further research.

Discussion

In this work we developed an approach to model changes in DNA methylation with age and
measure acceleration/decelerationof methylation rates with age. This approach is based on a
novel, probabilistic framework where two competing explanations are compared, where one of
the explanations is a special, restricted case of the other, and the comparison is made by the
likelihood ratio test.
The underlyingmechanism in the novel framework is the universal pacemaker that was

devised to find correlations among evolving genes in a genome, while relaxing the rate con-
stancy imposed by the traditional molecular clock model. The methylation setting is typically

Fig 5. Human data. (a) Rate Acceleration/Deceleration under PM vs MC: Curve indicates the MC/PM rates

respectively at each site in the study. As can be seen, rates generally maintain their original sign under both MC

and PM however some sites accelerate and others decelerate. (b) Age Acceleration/Deceleration under PM vs

MC: Ages were sorted in ascending sequence. For every time, the ratio between the PM inferred time to real

chronological time is plotted.

doi:10.1371/journal.pcbi.1005183.g005
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more complex than the genomic evolution setting as it involves more variables, making the
procedure and the analysis more computationally demanding. Therefore, we believe we have
made here only the first step in this direction.Nevertheless, the results we present, first in the
simulation analysis, but especially in the analysis of a human blood dataset with individuals of
different ages, mark this approach as promising These results on the human methylation data,
although based only on a sample of CpG sites, indicate that the rate of methylation changes
tend to diminish with age, suggesting that the use of the PM framework is appropriate in this
setting.
We remark that the emphasis in this work is on the mathematical and computational

aspects of this approach. These properties, as illustrated also in our simulation study, but also
in the algorithmic part of the Method section, are far from being trivial and we believe further
investigation will follow. The same also holds for the biological findings we indicate in our real
data study. These result are significant, but should be verified on larger data sets. In particular,
the finding of diminishing ratios PM/MC should be tested in a population that contains young
individuals. Finally, we expect that the model may also be of use when investigating epigenetic
aging in other species, and in the future intend to apply this formalism to datasets across
species.

Methods

Minimizing RSS as Maximum Likelihood Solution

We now show that, under our formulation, the RSS is minimized at the Maximum Likelihood
(ML) solution.
Let the residual sum of squares, RSS be defined as follows:

RSS ¼
X

1�i�n

X

1�j�m

ε2

i;j: ð10Þ

The formulation in Eq (10) is called least squares (LS) and is a very common criterion in opti-
mization [23].
Although the fact that RSS is minimised under least squares under a normal distribution,

since our formulation is somehow unique, we now show the the following lemma (see detailed
proof in S1 Text):

Lemma0.6Minimizing RSS is equivalent to finding the maximum likelihood solution to our
formulation.

Likelihood Ratio Test

The likelihood ratio test (LRT) is a statistical test used to compare the goodness of fit of two
competingmodels, one of which (the null model) is a special case of the other, more general,
one. The log of the ratio of the two likelihood scores distributes as a χ2 statistic and therefore
can be used to calculate a p-value. This p-value is used to reject the null model in the conven-
tional manner. Specifically, letΛ = L0/L1 where L0 and L1 are theML values under the restricted
and the more general models respectively. Then asymptotically, −2log(Λ) will distribute as χ2

with degrees of freedom equal the number of parameters that are lost (or fixed) under the
restrictedmodel.
In our case, (see Eq (6) in the S1 Text for a detailed explanation), it is easy to see that

log LÞð Þ ¼ �
nm
2
log

dRSSMC

dRSSPM

ð11Þ
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wheredRSSMC anddRSSPM are the ML values for RSS underMC and PM respectively. Hence we
set our χ2 statistic as

w2 ¼ nm log
dRSSMC

dRSSPM

 !

: ð12Þ
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