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ABSTRACT

HAT-P-13b is a Jupiter-mass transiting exoplanet that has settled onto a stable, short-period, and
mildly eccentric orbit as a consequence of the action of tidal dissipation and perturbations from a
second, highly eccentric, outer companion. Due to the special orbital configuration of the HAT-P-
13 system, the magnitude of HAT-P-13b’s eccentricity (eb) is in part dictated by its Love number
(k2b), which is in turn a proxy for the degree of central mass concentration in its interior. Thus,
the measurement of eb constrains k2b and allows us to place otherwise elusive constraints on the
mass of HAT-P-13b’s core (Mcore,b). In this study we derive new constraints on the value of eb
by observing two secondary eclipses of HAT-P-13b with the Infrared Array Camera on board the
Spitzer Space Telescope. We fit the measured secondary eclipse times simultaneously with radial
velocity measurements and find that eb = 0.00700 ± 0.00100. We then use octupole-order secular
perturbation theory to find the corresponding k2b = 0.31+0.08

−0.05. Applying structural evolution models,
we then find, with 68% confidence, that Mcore,b is less than 25 Earth masses (M⊕). The most likely
value of Mcore,b = 11M⊕, which is similar to the core mass theoretically required for runaway gas
accretion. This is the tightest constraint to date on the core mass of a hot Jupiter. Additionally, we
find that the measured secondary eclipse depths, which are in the 3.6 µm and 4.5 µm bands, best
match atmospheric model predictions with a dayside temperature inversion and relatively efficient
day-night circulation.
Subject headings: methods: observational — planetary systems — planets and satellites: dynamical

evolution and interior structure — techniques: secondary eclipse

1. INTRODUCTION

The interiors of gas giant planets provide ground
truth for planet formation theories and the proper-
ties of materials under high pressure and temper-
ature. Accordingly, many studies aimed at deriv-
ing the interior states of giant planets in our so-
lar system have been undertaken in the past half
century (e.g., Safronov 1969; Mizuno 1980; Stevenson
1982; Bodenheimer & Pollack 1986; Pollack et al. 1995;
Ikoma et al. 2000; Hubickyj et al. 2005; Rafikov 2006;
Fortney & Nettelmann 2010; Nettelmann et al. 2012;
Helled & Guillot 2013). The study of giant planets in
our solar system has been recently augmented by the
growing body of mass and radius measurements for tran-
siting extrasolar planets. These measurements have en-
abled the first studies of the heavy element components
of gas giants orbiting other stars, as has been done for
the super-Neptune HATS-7b (Bakos et al. 2015) and the
hot Saturn HD 149026b (Sato et al. 2005), and in the
statistical characterization of heavy-element enrichment
in extrasolar gas giant planets (e.g., Burrows et al. 2007;
Miller & Fortney 2011). Nonetheless, characterizing the
interior structure of exoplanets−in particular, determin-
ing the presence of a heavy element core−remains chal-
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lenging, since mass and radius measurements alone can-
not in general uniquely constrain the interior density pro-
file nor the chemical makeup of a planet. In particular,
determining whether heavy elements are concentrated in
the core or distributed uniformly within the envelope
is especially difficult for Jupiter-sized planets since the
large, predominantly light-element envelope masks the
signal of the radial distribution of heavy elements.
However, the orbital configuration in a subset of multi-

planet systems is such that the dynamical evolution of
the system depends on the Love number (k2) of its inner-
most planet (Batygin et al. 2009). The Love number (k2)
quantifies the elastic deformation response of a planet to
external forces and thus encodes information about its in-
terior structure, including clues about its core mass (Love
1909, 1911). Utilizing the secular theory of Mardling
(2007), Batygin et al. (2009) showed that, in a system of
two planets orbiting a central body, k2 of the inner planet
can be determined if (i) the mass of the inner planet is
much smaller than the mass of the central body, (ii) the
semi-major axis of the inner planet is much less than the
semi-major axis of the outer planet, (iii) the eccentricity
of the inner planet is much less than the eccentricity of
the outer planet, (iv) the planet is transiting, and (v) the
planet is sufficiently close to its host star, such that the
tidal precession is significant compared to the precession
induced by relativistic effects. The HAT-P-13 system is
the first and only currently known system to fulfill these
criteria.
The HAT-P-13 system consists of three bodies in orbit

around a central star with a mass of MA = 1.3 M⊙ and
radius RA = 1.8 R⊙ (Southworth et al. 2012). HAT-
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P-13b is a low-eccentricity transiting planet with mass
Mb = 0.9 MJ , radius Rb = 1.5 RJ , and an orbital pe-
riod of 2.9 days (Southworth et al. 2012). HAT-P-13c
is a radial velocity companion with a minimum mass
Mc = 14.2 MJ , an orbital period of 446 days, and
an eccentricity of 0.66 (Winn et al. 2010). This sys-
tem also exhibits a long-term radial velocity trend in-
dicative of a third companion located between 12 − 37
AU with a minimum mass of 15 − 200 MJ (Winn et al.
2010; Knutson et al. 2014). However, Becker & Batygin
(2013) demonstrated that the existence of this third com-
panion does not disrupt the secular dynamics that allows
the eccentricity of HAT-P-13b (eb) to be related to its
Love number (k2b ).
Using existing constraints on the orbital eccen-

tricity of HAT-P-13b from radial velocity measure-
ments, Batygin et al. (2009) were able to place an upper
bound on the core mass (Mcore,b) of 120 M⊕ (41% Mb).
In this study we present new observational measure-
ments of secondary eclipses of HAT-P-13b (i.e. when
HAT-P-13b passes behind its host star) obtained using
Spitzer Space Telescope, which we use to place stronger
constraints on the eccentricity of HAT-P-13b. We
combine these new secondary eclipse times with the
most recent transit and radial velocity measurements
of the system (Winn et al. 2010; Southworth et al. 2012;
Knutson et al. 2014) in order to derive an improved con-
straint on k2b and Mcore,b.
The paper is structured as follows. First, we describe

our data acquisition, post-processing, and analysis (Sec-
tion 2). We then present the results of the secondary
eclipse measurements and corresponding determination
of the eccentricity, k2, core mass, and atmospheric prop-
erties of HAT-P-13b (Section 3). Finally, we discuss the
implications of our findings in Section 4.

2. METHODS

2.1. Observations and Photometric Time Series
Extraction

Two observations of HAT-P-13 were taken using
the InfraRed Array Camera (IRAC) on board the
Spitzer Space Telescope (SST; Fazio et al. 2004), one us-
ing the 3.6 µm band on UT 2010May 09 and the other us-
ing the 4.5 µm band on UT 2010 June 08, 11 orbits later
(PI J. Harrington, Program ID 60003). Each dataset
comprises 68,608 sub-array images taken with 0.4 s inte-
gration times over 8.7 hours of observation.
We extract the UTC-based Barycentric Julian Date

(BJDUTC), subtract the sky background, and remove
transient hot pixels from each of the images as described
in Knutson et al. (2012) and Kammer et al. (2015). To
calculate the flux from the HAT-P-13 system in each im-
age, we first estimate the position of the star on the array
using the flux-weighted centroid method (Knutson et al.
2012; Kammer et al. 2015) with radii ranging between
2.0-5.0 pixels in 0.5 pixel increments. We then calculate
the corresponding stellar flux using a circular aperture
with either a fixed or time-varying radius. We consider
fixed radii ranging between 2.0-5.0 pixels in 0.5 pixel in-
crements, and calculate the time-varying aperture using
the square root of the noise pixel parameter as described
in Lewis et al. (2013). This parameter is proportional to
the full width at half max (FWHM) of the star’s point

spread function, and is calculated for each image using a
circular aperture with radii ranging between 2.0-5.0 pix-
els in 0.5 pixel increments. We then either multiply the
square root of the noise pixel parameter by a constant
scaling value of [0.6, 0.7, 0.8, 0.85, 0.9, 0.95, 1.00, 1.05,
1.10, 1.15, or 1.20] pixels or add a constant offset of [-
0.9, -0.8, -0.7, -0.6, -0.5, -0.4, -0.3, -0.2, -0.1, 0.0, 0.1, 0.2,
0.3, 0.4, or 0.5] pixels in order to determine the aperture
radius for each image.

2.2. Instrumental Noise Model and Optimal Aperture
Selection

We next create a time series for each photometric aper-
ture where we trim the first 90 minutes (11,904 images)
of each time series in order to remove the well-known
ramp that occurs at the start of each new telescope
pointing (e.g., Deming et al. 2006; Knutson et al. 2012;
Lewis et al. 2013; Kammer et al. 2015). We replace non-
numerical (NaN) flux values with the median flux value
of each time series and replace values that deviate by
more than three standard deviations from the local mean,
determined from the nearest 100 points, with the local
mean. We compare this approach to one in which we
instead trim outliers from our light curves and find that
our best-fit eclipse depths and times change by less than
0.2 sigma in both channels. 0.2% of the measurements
were outliers or NaN in each channel. We then normalize
each time series to one by dividing by the median value.
The photometric time series in both channels is dom-

inated by an instrumental effect related to IRAC’s well-
known intrapixel sensitivity variations, combined with
the pointing oscillation of the SST. We correct for this ef-
fect using Pixel Level Decorrelation (PLD), as described
by Deming et al. (2015). This method models the varia-
tion in flux intensity in each image due to this instrumen-
tal effect by tracking the change in intensity over time
within a small box of pixels centered on the flux-weighted
centroid. We use a total of nine pixels arranged in a 3x3
box centered on the position of the stellar centroid. We
remove images from the time series where one of these
nine pixels deviates from its mean flux by more than 3σ
(0.3% of the data at 3.6 µm and 0.1% of the data at
4.5 µm). Most of these deviations correlate with large
pointing excursions in the photometric time series. We
identify two pointing excursions in the 3.6 µm data, one
of 0.7 pixels for 10 s and one of 0.5 pixels for 20 s, and
one of 0.9 pixels for 10 s the 4.5 µm data.
We divide the flux in each individual pixel by the

summed flux across all nine pixels, weighting each pixel
by its contribution to the flux and thereby isolating
the instrument noise from astrophysical signals (see
Deming et al. 2015), and repeat this operation for each
image in our photometric time series. We also incor-
porate a constant and a linear term in time to model
baseline instrument noise. Unlike Deming et al. (2015),
we do not include a quadratic term because we found
that the linear fit has an equivalent RMS (root mean
square residual) to the quadratic fit and so adding the
quadratic parameter is not justified. In addition, the
quadratic term was correlated with the eclipse depth in
our model fits.
We fit a combined instrumental noise and

eclipse (Mandel & Agol 2002) model to the light
curve for each combination of photometric apertures
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Fig. 1.— The standard deviation of the residuals are normal-
ized to match the standard deviation of the unbinned residuals
for the PLD performed on data that was optimally binned be-
fore fitting (green), PLD that was not binned before fitting (blue),
and the Wong et al. (2014) pixel mapping fit (red) and plotted for
each bandpass as a function of bin size. The vertical dashed line
indicates the timescale of the eclipse ingress and egress. The ex-

pected
√

M/(n × (M − 1)) Gaussian scaling relation (Winn et al.
2008) of the standard deviation of the residuals as a function of the
number of points per bin is also plotted (black dash-dot line is nor-
malized to the Poisson noise and black dashed line is normalized
to the standard deviation of the unbinned residuals for the PLD
performed on data that was optimally binned before fitting; M is
the number of bins, n is the bin size). The 1σ uncertainties in the

RMS (RMS/
√
2M) of the binned PLD model are plotted in light

green.

listed in Sec. 2.1 using the ‘leastsq’ routine in SciPy
v0.14.0 with Python 2.7.6 and examine the residuals
from the best-fit solution in order to determine the
optimal aperture set for each bandpass. As discussed
in Deming et al. (2015) and Kammer et al. (2015), we
first bin the photometric light curves and time series for
individual pixels by a factor of 512 (∼4 minute intervals)
before fitting the model, then apply the resulting best-fit
model coefficients to the unbinned light curve. This
allows us to identify solutions that minimize noise on
longer time scales, which are most important for deter-
mining the best-fit eclipse parameters, in exchange for
a moderately higher scatter in the unbinned residuals.
We allow the center of eclipse time, eclipse depth, pixel
weights, constant, and linear terms to vary as free
parameters in our fits.
We excluded from consideration any apertures with an

unbinned RMS more than 1.1 times that of the aper-

ture with the lowest RMS in each band, focusing in-
stead on the subset of apertures with low scatter. We
then compared the relative amounts of time-correlated
or “red” noise in the remaining apertures by calculating
the standard deviation of the residuals as a function of
bin size. For light curves with minimal red noise, we
would expect the standard deviation of the residuals to
vary by the

√

M/(n× (M − 1)) Gaussian scaling rela-
tion (Winn et al. 2008) where n is the number of points
in each bin and M is the number of bins. We evaluate
the actual amount of red noise in the time series for each
aperture by calculating the least-squares difference be-
tween the observed and theoretical noise scaling (Fig. 1)
and select the aperture that minimizes this quantity in
each bandpass.
We next find the optimal bin size to use to fit the

lightcurve in each channel via the same least-squares ap-
proach with which we find the optimal aperture. After
determining the optimal bin size in each bandpass, we re-
peat our aperture optimization at the new bin size. We
iterate on searching for the optimal aperture and bin size
until we converge on the optimal pairing of aperture and
bin size for each bandpass.
After optimizing our choice of bin size and aperture,

we found that the 4.5 µm light curve displayed a resid-
ual ramp-like signal despite our decision to trim the first
90 minutes of data. We therefore experimented with
fits where we trimmed up to 3 hours of data from the
start of the light curve (i.e., up to the beginning of the
eclipse). We found that the best-fit eclipse times were
correlated with the amount of data trimmed from the
start of the light curve over the full range of trim dura-
tions considered, indicating that the ramp extended to
the start of the eclipse. We then considered an alterna-
tive approach in which we returned to our original 90
minute trim duration and deliberately used larger than
optimal bin sizes in our fits, effectively forcing the mod-
els to identify solutions with less structure on long time
scales. We found that fits with bin sizes larger than 100
points (40 s) effectively removed the ramp from the light
curve, avoiding the need to increase the trim interval to
values larger than 90 minutes. These fits resulted in best-
fit secondary eclipse times approximately 2 minutes (0.6
σ) earlier than our original fits with a smaller bin size.
We tested for a residual ramp by repeating the large bin
size fits with trim intervals ranging from 30 minutes up
to 3 hours, and found no evidence for a correlation be-
tween the trim interval and the best-fit eclipse time. We
then repeated our optimization for bin size considering
bin sizes between 128-2048 points in powers of two. We
found that our best-fit eclipse depths and times varied by
less than 0.4σ across this range, and were in good agree-
ment with the best-fit values for the 3-hour trim interval
using the smaller bin size. We also considered fits using a
smaller bin size where we included an exponential func-
tion of time to account for the observed ramp, but found
that this exponential function was a poor match for the
shape of the observed ramp. We speculate that a sum
of several exponentials might provide a better fit (e.g.,
Agol et al. 2010), but felt that the added free parame-
ters were not justified given the success of using larger
bin sizes. We also find that enforcing larger bin sizes
in the 4.5 µm channel leads to better agreement of the
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secondary eclipse timing between the two channels.
We also tried decorrelating instrumental noise in

our data using pixel-mapping (e.g., Ballard et al. 2010;
Lewis et al. 2013; Wong et al. 2014). This non-
parametric technique constructs an empirical map of the
pixel response across the chip by comparing the mea-
sured flux from each image to those of other images with
similar stellar positions. We model the pixel sensitivity
at each point in our time series using a Gaussian spatial
weighting function over the 50 nearest neighbors in stel-
lar centroid x and y position and noise pixel parameter
space. The inclusion of the noise pixel parameter in the
weighting ensures that the pixel map incorporates sys-
tematics unrelated to changes in the star’s position that
affect the shape of the stellar point-spread function. The
number of neighbors was chosen to be large enough to
adequately map the pixel response across the range of
star positions in each eclipse data set while maintaining
a reasonably low computational overhead (Lewis et al.
2013).
Deming et al. (2015) found that PLD is generally more

effective in removing time-correlated (i.e., red) noise than
other decorrelation methods as long as the range of star
positions across the data set remains below ∼0.2 pixels.
The range of star centroid positions in our eclipse data
sets lies below this threshold, and therefore, we expect
PLD to perform optimally. We also directly compare the
performance of PLD for cases where we fit to either the
unbinned or optimally binned photometry, as well as to
the fit acquired from photometry using the Wong et al.
(2014) pixel mapping technique described in the previ-
ous paragraph. We find that that the optimally binned
PLD have lower levels of correlated noise than the other
methods (Fig. 1). In addition, binned PLD gives center
of eclipse phases in the two bandpasses that are most con-
sistent with each other (at the 1.3σ level); the unbinned
PLD and pixel mapping techniques produced center of
eclipse phases consistent at the 2.6σ and 5.0σ levels, re-
spectively. We therefore select the PLD technique ap-
plied to the binned dataset for our final analysis.
For the fits described in the rest of this paper we use

the following optimal aperture set and bin size. For the
3.6 µm channel we select a bin size of 21 points (∼8 sec),
a 3.0 pixel radius aperture to find the centroid, a 2.0 pixel
aperture to find the noise pixel parameter, and add 0.3
pixels to the square root of the noise pixel parameter to
obtain the aperture within which we sum the flux. For
the 4.5 µm channel we select a bin size of 128 points (∼50
sec), a 4.5 pixel radius aperture to find the centroid, a 4.0
pixel aperture to find the noise pixel parameter, and add
0.3 pixels to the square root of the noise pixel parameter
to obtain the aperture within which we sum the flux.

2.3. Eclipse Statistical Errors

We determine the uncertainties on our model parame-
ters using the Markov-Chain Monte Carlo (MCMC) code
emcee v2.1.0 (Foreman-Mackey et al. 2013) on Python
2.7.6. We allow the center of eclipse time, eclipse depth,
pixel weights, constant, and linear terms to vary as free
parameters in our fits. We set the uncertainties on indi-
vidual points in each light curve equal to the standard
deviation of the residuals after subtracting the best-fit
solution in each bandpass. We run the MCMC with 250
walkers for 20,000 steps; the first 5000 steps from each

walker were ‘burn-in’ steps and removed from the chain.
For the observations in the 4.5 µm band we found that

the 1σ uncertainties on the RMS overlap with the er-
rors theoretically expected in the absence of correlated
noise on the timescale of the eclipse ingress and egress
(30 min; Fig. 1) and therefore report the uncertainties in
measurements from the 4.5 µm band directly from the
MCMC analysis. However, for the observations in the
3.6 µm band, the calculated RMS consistently deviate
above the expected improvement with increased binning
for timescales longer than 1 min. We therefore choose
a conservative approach and multiply the uncertainties
in the center of eclipse time derived from the MCMC in
the 3.6 µm band by a factor of 1.3, the factor by which
the RMS lies above the theoretical improvement at the
30 min timescale (Pont et al. 2006; Winn et al. 2007).
Since the timescale of the eclipse is approximately half
of the length of the dataset, we are unable to accurately
estimate the red noise on that timescale and so adopt
the same factor of 1.3 scaling for the eclipse depth un-
certainty in this band.

2.4. Eccentricity Determination

We next calculate an updated value for the eccen-
tricity of HAT-P-13b using the approach described
in Fulton et al. (2013). We fit the available radial ve-
locity observations for this planet from Knutson et al.
(2014) simultaneously with the best-fit transit ephemeris
from Southworth et al. (2012) and measured secondary
eclipse times from this study. We first allow the apsides
of each planet (ωb and ωc) to vary independently and
then repeat the fits imposing a prior that the posterior
distribution of ωb matches the posterior distribution of
ωc that was calculated from the fit in which ωb and ωc

were allowed to vary independently. We use the latter
version of the fits in our final analysis, and discuss the
rationale for this assumption in Sec. 2.6 and 4.1.

2.5. Interior Modeling

We use the MESA code (Paxton et al. 2011), a 1-
dimensional thermal evolution model, for interior mod-
eling. In the pressure-temperature space relevant to
HAT-P-13b, MESA uses the SCvH tables (Saumon et al.
1995) for the equation of state. We adopt a solar com-
position envelope and evolve an array of interior mod-
els of HAT-P-13b with varying core masses and en-
ergy dissipation rates. Specifically, we consider core
masses of 0.1-80M⊕ and dissipation rates equal to 0.05%,
0.10%, or 0.50% of the insolation. The thermal dissi-
pation range we adopt here encapsulates both (i) the
energy deposition typically quoted for hot Jupiters re-
siding on circular orbits (e.g. Ohmic dissipation, ki-
netic deposition) and (ii) an additional component of en-
ergy arising due to the sustained tidal dissipation (e.g.,
Bodenheimer et al. 2003; Batygin et al. 2009). We calcu-
late the insolation (I) using an equilibrium temperature
of 1725 K (Southworth et al. 2012).
We assume that the total mass of HAT-P-13b is the

best fit value reported by Winn et al. (2010), 0.906 MJ ,
and acknowledge that a more recent value (0.899MJ ,
Knutson et al. 2014) is available but that the mass-radius
relationship for giant planets is famously independent of
mass and so our choice of the Winn et al. (2010) mass
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Fig. 2.— The top row shows the normalized raw flux (black points) compared to the best-fit instrumental noise model (gray line). The
bottom row shows the best fit eclipse model (black line) and flux measurements after dividing out the instrumental noise model (black
points). All data and models are plotted with a bin size of 512 measurements (∼3.5 min) for visual clarity.

makes a negligible difference in our analysis. We also
note that the errors on the mass are negligible compared
to the uncertainties inherent in the equation of state (see
Fortney & Nettelmann 2010). We assume a Bond albedo
of zero and a core density of 10 g cm−3; varying the core
density by 2 g cm−3 has a negligible affect on the radial
density profile obtained by MESA. We let the MESA
models evolve for 3.0 Gyr, based on the best fit age of
3.5 Gyr reported by Southworth et al. (2012). However,
the radial density structure reaches a quasi-steady solu-
tion after ∼1 Gyr, so the results are insensitive to the
assumed system age.
For each pairing of core mass and dissipation rate we

calculate k2b based on the density profile, using the equa-
tions of Sterne (1939)1:

k2b =
3− η2(R)

2 + η2(R)
(1)

R is the radius of the planet and η2(R) is a dimension-
less quantity that is obtained by integrating the ordi-
nary differential equation radially in η2(r) outward from
η2(0) = 0:

r
dη2(r)

dr
+ η2(r)

2 − η2(r)− 6 +
6ρ(r)

ρm(r)
(η2(r) + 1) = 0 (2)

1 Note that the definition of k2,1 in Sterne (1939) is the apsidal
motion constant, i.e. k2b/2 in the notation used here.

In the above expression, ρ is the density obtained from
the density distribution ρ(r) output from MESA, and
ρm(r) is the mean density interior to r. Note that if the
core density is constant then η2(rcore) = 0, where rcore
is the core radius, (i.e. k2 is 3/2 for a body of constant
density, e.g., Ragozzine & Wolf 2008).
We use a linear spline to interpolate the coarse grid of

k2b and Rb values, corresponding to various core mass
and dissipation input pairings evolved in MESA, along
both the core mass axis and the dissipation axis, and
extend the grid from 0.1 − 80M⊕ to 0 − 80M⊕ with a
linear extrapolation.
Once we determine the model values of k2b and Rb

for each pair of core mass and dissipation, we evaluate
the probability of each core mass and dissipation pairing,
given the probability distributions of the measured values
of k2b and Rb for the HAT-P-13 system. While the prob-
ability distribution for Rb is measured from observation,
the probability distribution of k2b must be calculated.
We describe this calculation below.

2.6. Secular Perturbation Theory

The octupole-order secular theory of Mardling (2007),
augmented with a description of a tidally-facilitated ap-
sidal advance (Ragozzine & Wolf 2008), can be used
to describe the non-Keplerian components of motion
in the HAT-P-13 system and provides a method by
which the relationship between eb and k2b can be ob-
tained (Batygin et al. 2009). In the HAT-P-13 system,
tidal dissipation quickly drains energy and acts to circu-
larize the orbit of HAT-P-13b. However, the presence of
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TABLE 1
HAT-P-13 System Properties

eb 0.00700 ± 0.00100
ec 0.6554+0.0021

−0.0020

Mb (MJ )
2 0.899+0.030

−0.029

Mc sin(ic) (MJ )
2 14.61+0.46

−0.48

M∗ (M⊙)1 1.320± 0.062
Rb (RJ )

1 1.487± 0.041
R∗ (R⊙)1 1.756± 0.046
Tb (day)1 2.9162383 ± 0.0000022
Tc (day)2 445.82 ± 0.11
ab (AU)1 0.04383 ± 0.00068
γ (m s−1) −11.76+0.93

−0.9

γ̇ (m s−1 day−1) 0.0545 ± 0.0012
jitter (m s−1) 4.7+0.48

−0.43
3.6µm eclipse depth 0.0662 ± 0.0113%
3.6µm eclipse time (BJDUTC) 2455326.70818 ± 0.00406
3.6µm eclipse offset (min) -24.2 ± 5.8
3.6µm eclipse phase 0.49424 ± 0.00139
4.5µm eclipse depth 0.1426 ± 0.0130%
4.5µm eclipse time (BJDUTC) 2455355.87672 ± 0.00226
4.5µm eclipse offset (min) -15.5 ± 3.3
4.5µm eclipse phase 0.49633 ± 0.00079

1 Southworth et al. (2012), 2 Knutson et al. (2014)

the distant and highly eccentric HAT-P-13c acts to pre-
vent complete circularization of the orbit of HAT-P-13b.
Instead, the system tends towards a nearly elliptic equi-
librium point, which acts as an attractor in phase space.
As long as the orbits of HAT-P-13b and HAT-P-13c are
coplanar, this minimization is achieved through align-
ing the apsides. Apsidal alignment is typically reached
within ∼3 circularization timescales (Mardling 2007).
However, once orbital equilibrium is achieved, both or-
bits decay slowly and the orbital configuration remains
quasi-stable for the rest of the lifetime of the system.
In order to maintain alignment of the apsides, the apsi-

dal precession of both HAT-P-13b and HAT-P-13c must
be equal. That is:

˙̟ csec = ˙̟ bsec + ˙̟ btid + ˙̟ bGR
+ ˙̟ brot (3)

The secular apsidal precession of HAT-P-13c, ˙̟ csec ,
dominates all other contributions to the total apsidal pre-
cession of HAT-P-13c. The terms that dominate the ap-
sidal precession of HAT-P-13b are the secular precession,
˙̟ bsec , the tidal precession, ˙̟ btid , and general relativistic
precession, ˙̟ bGR

. The minor effects due to rotational
precession, ˙̟ brot , are also included but we neglect the
negligible contribution to the apsidal precession from the
stellar rotational bulge (e.g., Batygin et al. 2009). The
equations of apsidal precession are comprehensively dis-
cussed in Ragozzine & Wolf (2008) and given here for
convenience:

˙̟ csec =
3

4
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)(
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)2
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In the preceding equations, G is the Newtonian grav-
itational constant and c is the speed of light. The sub-
scripts ‘b’, ‘c’, and ‘*’ denote properties of HAT-P-13b,
HAT-P-13c, and the star, respectively. a is the semima-
jor axis, e is the eccentricity, n is the mean motion, R
is the radius, and M is the mass. Under the assump-
tion that the apsides are aligned, the ̟b −̟c terms in
Eqs. 4 and 5 are zero. Since all of the system properties
that appear in the equations of apsidal precession have
been measured, with the exception of k2b , Eq. 3 can be
rearranged to solve for the Love number of HAT-P-13b
purely in terms of known quantities. Note that it is not
necessary to measure the apsidal precession rate of either
HAT-P-13b nor HAT-P-13c, it is sufficient to know only
that they are equal.

2.7. Core Mass Determination

We construct the posterior probability distribution for
k2b from MCMC chains comprising 107 normally dis-
tributed values for each of the measured HAT-P-13 sys-
tem properties (Table 1) using Eqs. 3-8. We then mul-
tiply the probability distributions for k2b and Rb ob-
tained from MESA and map that distribution into a
2-dimensional probability distribution of core mass and
heat dissipation. Finally, we obtain the 1-dimensional
probability distribution of the core mass of HAT-P-13b
by marginalizing the 2-dimensional distribution over dis-
sipation, assuming a uniform prior on dissipation be-
tween 0.05%-0.5% I.

2.8. Atmospheric Measurements

We determine the dayside temperature of HAT-P-13b
from the measured secondary eclipse depths in each
bandpass. To do so, we first calculate the stellar flux by
integrating a PHOENIX stellar flux model (Husser et al.
2013) for each bandpass weighted by the subarray aver-
age spectral response curve2. We utilize a PHOENIX
model with an effective temperature of Teff = 5700
K, a surface gravity of log g = 4.0, and a modestly
enhanced metallicity of [Fe/H] = 0.5. For compari-
son, HAT-P-13 has a measured Teff = 5720 ± 69 K,
[Fe/H] = 0.46 ± 0.07 (Torres et al. 2012), and log g =
4.070± 0.020 (Southworth et al. 2012). We calculate the

2 Curve obtained from ‘Spectral Response’ at
http://irsa.ipac.caltech.edu/data/SPITZER/docs/irac/calibrationfiles

http://irsa.ipac.caltech.edu/data/SPITZER/docs/irac/calibrationfiles
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Fig. 3.— The probability distribution of the true core mass
of HAT-P-13b (black), along with the most probable core mass
(11 M⊕), 68% confidence interval (0−25 M⊕), and 95% confidence
interval (0−47 M⊕) are shown. The probability distribution of the
core mass is the product of the constraints on the core mass prob-
ability given by the measurement uncertainty in the Love number
(k2b , dash-dot) and the radius (Rb, dashed).

flux of the planet as a fraction of the total system flux
based on the depth of the secondary eclipse. We then
find the temperature that gives a blackbody curve that,
when integrated over its respective bandpass, matches
the planetary flux. We calculate the errors on the tem-
perature by constructing the posterior distribution for
the temperature in each wavelength using MCMC chains
of length 2.5 × 104, based on the measured eclipse depths
and Rb/R∗. The effective dayside temperature was cal-
culated by taking the error-weighted mean of the best-fit
temperatures in each bandpass.

3. RESULTS

3.1. Secondary Eclipse Measurements

We find that the HAT-P-13b secondary eclipses are
centered at 2455326.70818 ± 0.00406 and 2455355.87672
± 0.00226 BJDUTC in the 3.6 µm and 4.5 µm bands, re-
spectively. These times are 24.2 ± 5.8 minutes and 15.5
± 3.3 minutes earlier (orbital phase 0.49424 ± 0.00139
and 0.49633 ± 0.00079), respectively, than the predicted
time based on a circular orbit (Fig. 2), where we have ac-
counted for the 41 s light travel time delay (Loeb 2005)
and the uncertainty in the Southworth et al. (2012)
ephemeris (9.7 and 11 seconds for the 3.6 µm and 4.5
µm observations, respectively). The eclipse depths for
the 3.6 µm and 4.5 µm channel are 0.0662 ± 0.0113%
and 0.1426 ± 0.0130%, respectively (Fig. 2).
These secondary eclipse times are consistent at the

1.3σ level. We therefore take the error-weighted mean
and find that the observed center of secondary eclipse
time occurs 17.6 ± 2.9 minutes earlier (orbital phase
0.49582 ± 0.00069) than the predicted value for a cir-
cular orbit.

3.2. Eccentricity and Core Mass

Assuming apsidal alignment, the eccentricities of the
orbits for the two innermost planets in this system are

eb = 0.00700± 0.00100 and ec = 0.6554+0.0021
−0.0020. We use

these eccentricities to calculate a Love number for the
innermost planet (k2b) of 0.31

+0.11
−0.05, where values of k2b >

0.30 are inconsistent with the MESA interior models (i.e.,
would require a negative core mass). When we combine
this constraint on k2b with the measured planet radius
(Rb) we find that the core mass of HAT-P-13b is less than
25 M⊕ (less than 9% Mb; 68% confidence interval), with
a most likely core mass of 11 M⊕ (4% Mb; Fig. 3). The
constraint from k2b strongly favors smaller core masses,
while the constraint from Rb modestly favors larger core
masses, up to ∼ 60 M⊕ (Fig. 3).

3.3. Atmospheric Properties

We find best-fit brightness temperatures of 1680 ±

119 K at 3.6 µm and 2265 ± 150 K at 4.5 µm and
compare our measured eclipse depths in each band-
pass to atmosphere models from Burrows et al. (2008)
and Fortney et al. (2008) (Fig. 4). Both models assume a
solar composition, plane-parallel atmosphere with molec-
ular abundances set to the local thermal equilibrium val-
ues. The Fortney et al. (2008) models assume even heat
distribution across the dayside and vary the amount of
energy incident at the top of the dayside atmosphere in
order to approximate the effects of redistribution to the
night side. In these models the zero redistribution case is
labeled as ‘2π’ and the full redistribution case is labeled
as ‘4π’. We also consider versions of the model with
and without an equilibrium abundance of TiO; when
present, this molecule absorbs at high altitudes and pro-
duces a temperature inversion in the dayside atmosphere.
The Burrows et al. (2008) models account for the pres-
ence or absence of a dayside temperature inversion by
introducing a gray absorber at low pressures where the
opacity κ can be adjusted as a free parameter. Atmo-
spheric circulation is included as a heat sink between
0.01-0.1 bars, where the parameter Pn defines the frac-
tional amount of energy redistributed to the night side
and ranges from 0-50% (from no redistribution to the
nightside to complete redistribution across both hemi-
spheres). The Fortney et al. (2008) model satisfactorily
reproduces the observed eclipse depths in both band-
passes when including a dayside temperature inversion
due to absorption from TiO and relatively efficient circu-
lation between the day and night sides. Although none
of the Burrows et al. (2008) models are able to match
the observed 3.6 micron eclipse depth within the 3σ un-
certainty, we obtain the closest match with models that
include an absorber (κ = 0.1) and relatively efficient cir-
culation (Pn = 40%).

4. DISCUSSION

4.1. Effects of Coplanarity and Apsidal Alignment

Correlations between the apsidal orientation (ω) and
eccentricity (e) introduce errors on the determination of
eccentricity of HAT-P-13b (eb). Since eb is relatively
small, we obtain a correspondingly poor constraint on
ωb of 231+17

−42 degrees in fits where we allow ωb to vary
independently of ωc. However, since ec is large, we are
able to measure ωc with an uncertainty of less than a
degree (ωc = 175.28◦+0.21

−0.22). The measured apsidal an-
gles for planets b and c are thus consistent with apsidal
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Fig. 4.— The left panel shows six dayside atmosphere models for HAT-P-13b based on Fortney et al. (2008) and the right panel shows
four models based on Burrows et al. (2008). The measured secondary eclipse depths at 3.6 and 4.5 microns are overplotted as black filled
squares, and the band-integrated model predictions are shown as colored X’s for comparison. Fortney et al. (2008) models an atmospheric
absorber with TiO and either no circulation (2π), partial circulation (3π), or full circulation (4π). Burrows et al. (2008) models opacity
with a gray source (κ, units of cm2g−1) and the fraction of energy redistributed to the night side (Pn; 10% is minimal redistribution, 40%
is near-maximal redistribution).

alignment, although the relatively large uncertainties on
ωb preclude a definitive determination.
When we allow ωb to vary freely in our fits we find

that eb = 0.0108+0.0069
−0.0035. This eccentricity is nonzero at

the 3.1σ level, providing independent confirmation that
the orbit of HAT-P-13b has not yet been circularized
and therefore that the secular orbital coupling mecha-
nism discussed by Mardling (2007) and Batygin et al.
(2009) is applicable to this system. Note that the un-
certainty in eb is more than five times greater than in
the case when we assume apsidal alignment.
If the planets are coplanar, their apsides will align

in much less than the age of the HAT-P-13 sys-
tem (Mardling 2007; Batygin et al. 2009). Mardling
(2010) showed that an initial mutual inclination between
the orbits of HAT-P-13b and HAT-P-13c would evolve to
a limit cycle in eb and apsidal orientation, rather than to
a fixed eb and apsidal alignment. That study explored
the effects of the inclination angle between the orbits
of HAT-P-13b and HAT-P-13c (∆ib−c) on eb and found
that if the orbits are nearly coplanar (∆ib−c ≤ 10◦) then
the limit cycle in eb will have a width of less than 3% eb
and the width of the limit cycle of the angle between the
apsides is . 4◦ (calculated from Eq. 15, 16, and 17 of
Mardling 2010). Thus, the eb measured at a particular
epoch of the HAT-P-13 system is insensitive to this limit
cycle if ∆ib−c is low.
We propose that ∆ib−c is indeed likely to be small,

based on both observational constraints and theoret-
ical arguments. First, the exploration by Mardling
(2010) found that a configuration of either (i) pro-
grade, near-coplanar orbits or (ii) 130◦ . ∆ib−c .
135◦ is strongly favored. Second, Winn et al. (2010)
measured the Rossiter-McLaughlin effect (Rossiter 1924;
McLaughlin 1924) during a transit of HAT-P-13b and
found that the spin axis of the star and the angular mo-
mentum vector of HAT-P-13b’s orbit are well aligned
on the sky (λ = 1.9 ± 8.6◦). This is significant be-

cause HAT-P-13b orbits far enough from the star that the
the orbital precession rate is dominated by torque from
HAT-P-13c rather than the J2 quadrupole moment of the
star (Mardling 2010; Winn et al. 2010). If ∆ib−c were
large, as in case (ii) of Mardling (2010), nodal precession
of HAT-P-13b’s orbit around HAT-P-13c’s orbital axis
would ensue, manifesting as cyclic variations in the an-
gle between stellar equator and the orbital plane of HAT-
P-13b (ψ∗,b). Therefore, it is unlikely that a small value
for ψ∗,b would be measured at a randomly selected epoch
unless ∆ib−c is small (Winn et al. 2010). However, the
initial orbital configuration of the system is unknown and
the sky-projected angle (λ), rather than the true ψ∗,b, is
measured, so it is not possible to definitively determine
∆ib−c from the Rossiter-McLaughlin measurement alone.
We therefore argue that ∆ib−c must be small, without
attempting to place a definitive upper limit on ∆ib−c.
A direct measurement of ∆ib−c may be forthcom-

ing by studying transit timing variations (TTVs) in
the orbit of HAT-P-13b, since mutual inclination
can induce a detectable TTV signature (Nesvorný
2009). Southworth et al. (2012) found that there is no
compelling evidence for large TTVs in the orbit of HAT-
P-13b, although TTVs of less than 100 s are possi-
ble (Fulton et al. 2011). Payne & Ford (2011) explored
theoretical TTVs for HAT-P-13b and found that HAT-
P-13c should induce TTVs on the order of tens of sec-
onds, and that a precise determination of TTVs would
make it possible to discriminate between the two allowed
scenarios (∆ib−c near 0

◦ or 130-135◦) found by Mardling
(2010).
Astrometry of HAT-P-13 could also be used to probe

∆ib−c. We calculate an expected astrometric signal from
HAT-P-13b of either (i) 61 µas, if the orbit of HAT-P-13c
is effectively edge-on as seen from Earth or (ii) 86 µas if
it is inclined at 135◦ as seen from the Earth. Astrom-
etry from the Gaia mission should be accurate to ∼10
µas (Lindegren 2009) and thus will be sensitive enough to
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Fig. 5.— The relationship between eb and k2b for the HAT-
P-13 system parameters measured by different studies, including
the fourth order polynomial approximation given in Batygin et al.
(2009). The best-fit (triangles) and 1σ (circles) uncertainties in
eb reported by each study are plotted on their respective eb-k2b
curves. The curves do not include uncertainties in the eb-k2b re-
lationship due to measurement errors, unlike our Bayesian model
(Fig. 3), which does take them into account.

discriminate between these two scenarios. Although a di-
rect measurement of the apsidal precession of the system
(i.e., ˙̟c) would allow a direct check of the secular pertur-
bation theory that allows us to calculate k2b , we calculate
that the precession rate for this planet is on the order of
10−4 deg/year and is therefore beyond the reach of cur-
rent radial velocity observations. However, the presence
of a third companion (Winn et al. 2010; Knutson et al.
2014) in the system may complicate the determination
of ∆ib−c using any of these methods.

4.2. Interior Structure

The initial characterization ofMcore,b by Batygin et al.
(2009) was limited by the relatively large uncertainty
in the published eccentricity for the innermost planet.
Based on radial velocity data alone they concluded that
Mcore,b must be less than 120 M⊕ at the 1σ level,
and argued that core masses greater than 40 M⊕ were
disfavored based on the required effective tidal dissi-
pation (Qb)

3. More recently, Kramm et al. (2011)
used updated measurements of the HAT-P-13 system
from Winn et al. (2010) to find an allowed range of k2b
based on the 1σ error on eb by using the polynomial re-
lating eb and k2b given in Batygin et al. (2009). They
then used that k2b range to place constraints on the inte-
rior structure of HAT-P-13b using the values of Mb and
Rb from Bakos et al. (2009) and complex interior models.
Their analysis indicated that Mcore,b is less than 27M⊕.
However, caution must be exercised when using the poly-
nomial equation of Batygin et al. (2009), since the shape
of the curve strongly depends on all of the measured sys-
tem parameters (Fig. 5). In addition, the polynomial
does not include uncertainties in the eb-k2b relationship
due to observational measurement uncertainties.

3 Although, their model did not account for other sources of
heating such as Ohmic dissipation.

Our analysis offers an improved estimate of Mcore,b

(less than 25M⊕ with 68% confidence) by taking into
account both the change in the dependence of k2b on eb
due to updated measurements ofMb,Mc,M∗, Rb, Tb, Tc,
and ec and the effect of the uncertainties in those mea-
sured values on the eb-k2b relationship andMcore,b deter-
mination, which had been neglected in previous studies.
When combined with new radial velocity measurements
from Knutson et al. (2014), the secondary eclipse mea-
surements of HAT-P-13 provide strong constraints on eb
and our assumption of apsidal alignment further reduces
uncertainty on this parameter. Our method also allows
us to explore the full probability distribution for Mcore,b

instead of only placing an upper bound on its value.
There are several caveats worth mentioning in regard

to our estimated core mass. We note that k2 is only
the lowest harmonic describing the internal yielding of
a body to external forces, and is thus an inherently de-
generate quantity (as noted for specific models of HAT-
P-13b by Kramm et al. 2011). The effects of metallicity
on atmospheric opacity may also affect the thermal evo-
lution and thus the radial structure of the planet (as
noted for brown dwarfs by Burrows et al. 2011) but are
neglected here. We adopt a solar composition enve-
lope for definitiveness and expect that increasing the
metallicity will have only a small effect on our pre-
dicted core mass based on the extensive exploration of
this effect on interior models performed by Kramm et al.
(2011). We also note that an inhomogeneous heavy
element distribution may lead to an overestimation of
Mcore,b (Leconte & Chabrier 2012). Thus, our estimate
is specific to a model with a refractory element core and a
solar composition envelope. Imperfect knowledge of the
equations of state of materials at high pressure and tem-
perature also introduces additional uncertainties (e.g.
Fortney & Nettelmann 2010) that are not accounted for
in this study.
In addition, strong constraints on the internal heat dis-

sipation are not available, although we can determine
how the uncertainty in the internal dissipation impacts
our conclusions for Mcore,b by re-calculating the Mcore,b

probability distribution assuming either extremely high
or extremely low dissipation rates. We find that the main
effect of the dissipation rate is to shift the peak of the
probability distribution for Mcore,b lower for higher val-
ues of dissipation, while maintaining a comparable dis-
tribution shape. When we specify dissipation as 0.05% I,
the probability distribution peaks at Mcore,b = 22 M⊕.
For a dissipation of 0.50% I, the probability distribu-
tion peaks at Mcore,b = 3 M⊕. We therefore conclude
that uncertainties in the internal heat dissipation intro-
duce modest, but not overwhelming, uncertainties in the
estimate of Mcore,b (i.e., lack of knowledge of the heat
dissipation yields uncertainties that are within the 1σ
errors from the observational uncertainties).

4.3. Dayside Atmosphere

Schwartz & Cowan (2015) compare the irradiation

temperatures (T0 = T∗
√

R∗/ab) of a large sample of
hot Jupiters to their measured dayside brightness tem-
peratures (Td) from secondary eclipse observations, and
find that hotter planets appear to have relatively ineffi-
cient day-night circulation. For HAT-P-13b T0 = 2469
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K, yielding a predicted Td ≈ 2090 K (from Fig. 2 of
Schwartz & Cowan 2015), which is 2σ above the effec-
tive dayside temperature we measure (1906±93 K). The
Td/T0 that we obtain for HAT-P-13b (0.7720 ± 0.0377)
indicates relatively efficient redistribution of energy to
the night side for the case of zero Bond albedo (see Fig.
7 of Cowan & Agol 2011), in good agreement with our
findings in Sec. 3.3. The T0/Td of HAT-P-13b also fits
the trend of decreasing T0/Td with lower planetary mass
found by Kammer et al. (2015) (their Fig. 13). The
circulation model of Perez-Becker & Showman (2013),
which depends on the equilibrium temperature of the
planet, also predicts moderately efficient energy redis-
tribution such that the nightside flux from HAT-P-13b
should be 0.55-0.75 that of its dayside flux, depending
on the drag timescale.

4.4. Comparison to Other Systems

Our analysis indicates that Mcore,b is comparable
to the core masses of Jupiter (Mcore,J < 18M⊕,
Fortney & Nettelmann 2010) and Saturn (Mcore,S = 5-
20M⊕, Helled & Guillot 2013) in our own solar sys-
tem. Core accretion models for gas giant planet for-
mation suggest that minimum core masses of approx-
imately 10 M⊕ are needed in order to form Jovian
planets, although this limit depends on both the com-
position of the core and the properties of the gas
disk near the planet’s formation location (e.g Mizuno
1980; Bodenheimer & Pollack 1986; Pollack et al. 1995;
Ikoma et al. 2000; Hubickyj et al. 2005; Rafikov 2006).
Although our observation is consistent with core accre-
tion theory (Safronov 1969; Stevenson 1982), our 1σ
confidence interval extends down to zero core mass and
therefore does not preclude alternative formation models
such as disk instability (e.g., Boss 1997), nor does it pro-
vide a definitive test of post-formation core erosion (e.g.
Stevenson 1982; Guillot et al. 2004).
Work has been undertaken to probe the heavy-

element fractions of gas giant planets across a broad
range of planets, from the hot super-Neptune HATS-
7b (Bakos et al. 2015) and hot Saturn HD 149026b (e.g.,
Sato et al. 2005; Ikoma et al. 2006; Fortney et al. 2006;
Burrows et al. 2007; Southworth 2010) to super-
Jupiters (e.g. GJ436b and HAT-P-2b; Baraffe et al.
2008). The constraints on the heavy-element component
of these planets are often accompanied by statements
about their inferred core mass, with the caveat that
there are degeneracies between models with heavy ele-
ment cores and models with heavy elements distributed
throughout the envelope (e.g., Baraffe et al. 2008). Av-
enues for partially breaking the degeneracies between
thermal evolutionary models with heavy-elements dis-
tributed throughout the planet and models with heavy-
element cores are available for extremely metal-rich plan-
ets, such as HATS-7b and HD 149026b. However, in gen-
eral, measurements of mass and radii can only be used
to constrain the overall fraction of the planetary mass
composed of heavy elements. The inference of a radial
distribution of refractory elements, and therefore asser-
tions related to the mass of a solid core, require addi-
tional information (e.g. knowledge of k2). In this regard
HAT-P-13b is unique because it is the only member of
the extrasolar planetary census for which this additional
information exists.

Our constraint on the core mass of HAT-P-13b is
consistent with the determination of heavy-element en-
richment, with the accompanying inference of the pres-
ence of cores in hot Jupiters by Torres et al. (2007)
and Burrows et al. (2007). Torres et al. (2007) invoke the
presence of heavy element cores to explain the small radii
of the metal-rich 0.60 MJ HAT-P-3b and 0.62 MJ XO-
2b, and Burrows et al. (2007) investigated a sample of
14 hot Jupiters and found that a subset of those planets
had smaller radii than allowed by models without either
a solid core or metal-rich envelope. We stress, though,
that the independent measurement of the degree of cen-
tral mass concentration, such as done in this paper, is
necessary to determine the radial distribution of heavy
elements for Jovian-mass planets.
Finally, we also compare the results of our study to

empirical scaling relations from Miller & Fortney (2011),
which are based on mass and radius measurements from a
sample of 15 planets with moderate irradiation levels (in-
cident flux < 2×108 erg s−1) around stars with metallici-
ties ranging from [Fe/H]∗ = -0.030 to +0.390. That study
found a positive correlation between the bulk metallicity
of a planet and that of its host star and a negative corre-
lation between a planet’s mass and its metallicity. It also
provided an empirical relationship relating the heavy el-
ement complement of giant planets (MZ) to their host
star: log10(MZ) = (0.82± 0.08) + (3.40± 0.39)[Fe/H ]∗.
Applying this relation to HAT-P-13b, which orbits a rela-
tively metal-rich star ([Fe/H]∗ = 0.46±0.07; Torres et al.
(2012)), we find an estimated heavy element mass of
242+568

−160 M⊕, i.e., 84% of the total mass of HAT-P-
13b, a much higher percentage than we determine for
the core mass of HAT-P-13b and also a higher per-
centage than is found for most of the planets consid-
ered by Miller & Fortney (2011). This may indicate that
the empirical relation cannot be extrapolated to planets
around stars with metallicities higher than those of the
stars they studied, or that there are additional parame-
ters, such as formation location, that can affect the final
core masses for these planets.

4.5. Future Measurements

Other systems analogous to the HAT-P-13 system, i.e.,
systems that allow us to measure the k2 of the inner
planet, will be useful for exploring the distribution of core
masses over a larger sample of giant planets. In order to
exploit the models utilized in this study we require that
such a planet (i) be transiting, (ii) have a circularization
timescale less than one third of the age of the system, (iii)
have an equilibrium eccentricity large enough to be mea-
sured with high precision (Eq. 36 of Mardling 2007), and
(iv) have a ˙̟ btid comparable to or larger than ˙̟ bGR

(Eq.
12 of Batygin & Laughlin 2011). Radial velocity ob-
servations of the Kepler-424 (Endl et al. 2014), WASP-
41 (Neveu-VanMalle et al. 2015), HAT-P-44, HAT-P-45,
and HAT-P-46 (Hartman et al. 2014) systems indicate
that they may have architectures that would make them
amenable to this kind of study. We note that many of
the hot Jupiters detected by ongoing transit surveys have
relatively sparse radial velocity observations, making it
difficult to determine whether or not they have a suitable
outer companion. Knutson et al. (2014) find that approx-
imately half of all hot Jupiters have massive long-period
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companions, suggesting that there is a high probability
that future radial velocity campaigns will discover addi-
tional systems analogous to HAT-P-13b.
Although the current observations of HAT-P-13 pro-

vide an improved estimate of the innermost planet’s or-
bital eccentricity, the uncertainty in this parameter is still
the single largest contribution to the uncertainty in the
Love number. We therefore conclude that this system
could benefit from additional secondary eclipse measure-
ments.
One of our model limitations is the lack of con-

straint on the metallicity of HAT-P-13b’s envelope (see
Kramm et al. 2011). Therefore further atmospheric
studies are critical to refine our understanding of HAT-
P-13b’s structure and composition. Atmospheric cir-
culation models for tidally locked planets suggest that
high metallicity atmospheres may have less efficient at-
mospheric circulation than their lower-metallicity coun-
terparts (Lewis et al. 2010), which does not appear to
be the case for HAT-P-13b based on the atmospheric
models we perform. Since HAT-P-13 is currently one of
the most metal-rich stars known to host a hot Jupiter,
it is intriguing that neither HAT-P-13b’s core mass nor
its atmosphere suggest significant heavy element enrich-
ment. The HAT-P-13 system will likely provide invalu-
able leverage when exploring the relationship between
host star and planetary metallicity. In addition, full-
orbit phase curve observations with Spitzer would also
allow us to break degeneracies between the planet’s day-
side albedo and the efficiency of its atmospheric circula-
tion (e.g., Schwartz & Cowan 2015). The possibility of
independently constraining both the core mass and the
atmospheric properties of HAT-P-13b makes this planet
an ideal target for future observations.

5. CONCLUSIONS

In this study we present observations of two sec-
ondary eclipses of HAT-P-13b centered at 2455326.70818
± 0.00406 and 2455355.87672 ± 0.00226 BJDUTC. This
corresponds to an error-weighted mean eclipse time that
is 17.6 ± 2.9 minutes minutes earlier (at orbital phase
0.49582 ± 0.00069) than the predicted time for a cir-
cular orbit, indicating that this planet has a non-zero
orbital eccentricity. We fit the measured eclipse times
simultaneously with the available radial velocity data in
order to derive an eccentricity of eb = 0.00700± 0.00100
for this planet, under the assumption that the orbits of
HAT-P-13b and HAT-P-13c are coplanar. Using this ec-

centricity, we calculate a corresponding constraint on the
planet’s Love number (k2). We then use this k2 and the
measured radius of HAT-P-13b as constraints on interior
structure models, which allow us to directly estimate the
mass of the planet’s core. Moderate mutual inclinations
(up to ∼ 10◦ between the orbits of HAT-P-13b and HAT-
P-13c) do not significantly alter the constraint from eb
on the determination of the core mass.
We calculate that the core mass of HAT-P-13b is less

than 25 M⊕ (9% of the planet’s mass; 68% confidence
interval), with a most likely core mass of 11 M⊕ (4% of
the planet’s mass). We also use the secondary eclipse
depths to find that the dayside temperature is 1906± 93
K. Comparing these depths and the dayside temperature
to models, we find that it is likely that HAT-P-13b has a
strong atmospheric absorber and efficient dayside energy
redistribution.
Obtaining the Love number of HAT-P-13b is crucial

to determining its core mass because the presence of a
modest core in a Jupiter-mass planet is typically masked
by its overlying envelope. The unique opportunity to
independently constrain the core mass and atmospheric
properties of this hot Jupiter with a modestly sized core
makes the HAT-P-13 system an important case study
for dynamical constraints on the core masses of gas giant
planets.
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