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Abstract

Epidemics of respiratory syncytial virus (RSV) are known to occur in wintertime in temperate countries including the United
States, but there is a limited understanding of the importance of climatic drivers in determining the seasonality of RSV. In
the United States, RSV activity is highly spatially structured, with seasonal peaks beginning in Florida in November through
December and ending in the upper Midwest in February-March, and prolonged disease activity in the southeastern US.
Using data on both age-specific hospitalizations and laboratory reports of RSV in the US, and employing a combination of
statistical and mechanistic epidemic modeling, we examined the association between environmental variables and state-
specific measures of RSV seasonality. Temperature, vapor pressure, precipitation, and potential evapotranspiration (PET)
were significantly associated with the timing of RSV activity across states in univariate exploratory analyses. The amplitude
and timing of seasonality in the transmission rate was significantly correlated with seasonal fluctuations in PET, and
negatively correlated with mean vapor pressure, minimum temperature, and precipitation. States with low mean vapor
pressure and the largest seasonal variation in PET tended to experience biennial patterns of RSV activity, with alternating
years of ‘‘early-big’’ and ‘‘late-small’’ epidemics. Our model for the transmission dynamics of RSV was able to replicate these
biennial transitions at higher amplitudes of seasonality in the transmission rate. This successfully connects environmental
drivers to the epidemic dynamics of RSV; however, it does not fully explain why RSV activity begins in Florida, one of the
warmest states, when RSV is a winter-seasonal pathogen. Understanding and predicting the seasonality of RSV is essential in
determining the optimal timing of immunoprophylaxis.
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Introduction

Respiratory syncytial virus (RSV) is a major cause of severe

lower respiratory tract infections, including bronchiolitis and

pneumonia. Most children experience their first infection by age 2

years, but immunity is imperfect and infections continue to occur

throughout life, although subsequent infections tend to be less

severe. An estimated 66,000–199,000 deaths in children ,5 years

old are associated with RSV globally, the majority occurring in

developing countries [1]. In the United States (US), RSV remains

a major cause of severe respiratory infection in infants ,1 year of

age, and has been estimated to cause .2,000 hospitalizations per
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100,000 infants per year [2]. The incidence of RSV is strongly

seasonal in the US and other temperate countries, with the

majority of cases occurring during annual winter epidemics [3–8].

However, the timing of RSV activity varies substantially among

different regions of the US, with year-round circulation and peak

activity as early as October in southeastern Florida [9], and peaks

occurring as late as May in the upper Midwest [4,5,10].

The development of a safe and effective vaccine against RSV

has proven difficult. Therefore, prevention relies upon passive

immunoprophylaxis with palivizumab to reduce the number of

severe outcomes associated with RSV infection among high-risk

infants [11]. While palivizumab is effective at lessening the severity

of RSV infections in certain infants and children, the treatment is

very expensive and the protection afforded is short-lived, requiring

monthly injections during the RSV season; therefore, predicting

the timing of RSV activity is essential to optimizing the cost-

effectiveness of immunoprophylaxis [12–14].

Attempts have been made to correlate RSV seasonality with

climatic variables [13,15–25]. Such phenomenological analyses

are important; however, RSV epidemics show strong signatures of

nonlinear epidemic dynamics [26–29] and few studies have

explored climatic associations in a variety of locations covering a

range of RSV seasonality patterns and climatic regimes [25].

Therefore, we begin with linear models relating incidence patterns

and candidate environmental drivers of RSV epidemics in US

states. We then refine these to account for the dynamics of

infection and fluctuations in immunity and susceptibility that can

influence the relationship between environmental factors and

epidemic timing [29–33].

By combining statistical analyses with mathematical modeling of

the transmission dynamics of RSV across the US, we aimed to

gain a better understanding of the important drivers of the

spatiotemporal pattern of RSV epidemics. We build upon previous

efforts to model the transmission dynamics of RSV [26–30,34,35]

by fitting our model to data from a large number of states with

similar underlying socio-demographics, but markedly different

climatic conditions. By analyzing the relationship between

estimated seasonality parameters and climatic variables, we are

able to shed light on the environmental drivers of RSV

transmission.

Results

Description of spatiotemporal patterns of RSV
Hospitalizations for RSV were strongly seasonal, with annual

epidemics occurring during the winter months in most states

(Fig. 1A, S1 Fig.). Some states (e.g. Colorado, Iowa, California in

the 1990s) exhibited biennial patterns of alternating ‘‘early-big’’

epidemics in/around January of even-numbered years and ‘‘late-

small’’ epidemics in/around February of odd-numbered years.

The peak in RSV hospitalizations was notably earlier in Florida

(occurring in November/December) compared to the other states,

and hospitalizations occurred throughout the year (Fig. 1A). The

vast majority (.97%) of RSV-coded hospitalizations occurred

among children ,5 years of age, and ,75% occurred among

children ,1 year of age. The age distribution of cases varied

slightly by state (Fig. 1B).

Laboratory reports of RSV-positive specimens exhibited a

distinct spatial pattern, with mean timing of RSV activity (as

indicated by center of gravity, a measure of mean epidemic week

(S1 Text) [36]) occurring earliest in Florida and latest in Montana

(Fig. 1C). Again, some states exhibited a biennial pattern of RSV

epidemics; these states were highly concentrated in the upper

Midwest and West regions (Fig. 1D). The laboratory and

hospitalization data were highly correlated for those states with

both types of data available (r.0.71, p,0.0001, S1 Table).

Linking environmental drivers and timing of RSV activity
We explored trends between a variety of climatic and non-

climatic variables and timing of RSV activity across US states, as

measured by both center of gravity and phase difference with

Florida (Table 1 and S2 Table, S2 Fig.). Negative associations

were found with annual mean vapor pressure, temperature,

precipitation, and potential evapotranspiration (PET), and were

generally stronger when considering the mean value for the fall

months (September-November) for each climatic factor. Popula-

tion size and latitude were also associated with RSV timing

(Table 1). Fall vapor pressure had the highest explanatory power

(R2 = 72–76%), and was also the only significant factor in an

exploratory multivariate analysis (p,0.0001) (S3 Table). Note that

while these analyses may be indicative of statistical trends, they do

not account for the intrinsic nonlinear epidemic dynamics of RSV.

Dynamic modeling analyses
Mathematical modeling of the transmission dynamics of RSV

allows us to explore the mechanistic relationship between the

potentially important environmental variables and seasonal

variation in the transmission rate, via which the environmental

variables would likely act to affect the incidence of RSV [30]. We

developed an age-stratified SIRS (Susceptible-Infectious-Recov-

ered-Susceptible) model for the transmission dynamics of RSV,

accounting for repeat infections and using natural history

parameters derived from RSV cohort studies (Table 2). The

model was able to reproduce the age distribution (x2,0.17, p,

0.005) and seasonal pattern of RSV hospitalizations in ten states

(correlation between observed and predicted annual center of

gravity: r = 0.87, p,0.005) (Fig. 2, S1 Fig.). Notably, the model

was able to reproduce the biennial pattern of epidemics evident in

some states even though we assume that the transmission rate of

RSV follows the same seasonal pattern every year. Furthermore,

the model was able to replicate the transition from biennial

epidemics during the 1990s to annual epidemics during the 2000s

Author Summary

Respiratory syncytial virus (RSV) causes annual outbreaks
of respiratory disease every winter in temperate climates,
which can be severe particularly among infants. In the
United States, RSV activity begins each autumn in Florida
and appears to spread from the southeast to the
northwest. Using data on hospitalizations and laboratory
tests for RSV, we show that the timing of epidemics is
associated with a variety of climatic factors, including
temperature, vapor pressure, precipitation, and potential
evapotranspiration (PET). Furthermore, using a dynamic
model, we show that seasonal variation in the transmission
rate of RSV can be correlated with the amplitude and
timing of variation in PET, which is a measure of demand
for water from the atmosphere. States with colder, drier
weather and a large seasonal swing in PET tended to
experience an alternating pattern of ‘‘early-big’’ RSV
epidemics one year followed by a ‘‘late-small’’ epidemic
the next year, which our model was able to reproduce
based on the interaction between susceptible and
infectious individuals. However, we cannot fully explain
why epidemics begin in Florida. Being able to understand
and predict the timing of RSV activity is important for
optimizing the delivery of immunoprophylaxis to high-risk
individuals.

RSV Spatiotemporal Dynamics

PLOS Pathogens | www.plospathogens.org 2 January 2015 | Volume 11 | Issue 1 | e1004591



that occurred in California, possibly due to changes in the birth

rate.

From the best-fitting model to the aggregate data from the nine

states with complete age-stratified hospitalization time series from

1989–2009, we estimated the relative infectiousness of third and

subsequent infections compared to first two infections to be 0.51

(Table 2). The mean value of R0 was estimated to be 8.9, but we

observed state-specific variation in R0 (with estimated values

between 8.9 and 9.2), which was significantly correlated with

population density (r = 0.77, p,0.01) (S3 Fig.). The estimated

hospitalized fraction (h) also varied among states (from 3.2% in

California to 6.9% in Colorado), but was not significantly

correlated with population size or density, nor were estimates of

R0 and h significantly correlated with one another (S4 Table). Our

estimates of the hospitalized fraction are similar albeit slightly

lower than the 7–8% of infants with lower respiratory tract

infections who were hospitalized during cohort studies conducted

in the US and Kenya [37,38]; this is not surprising given one US-

based study noted that only 45% of RSV-positive inpatients

received an RSV-associated diagnosis [39].

The amplitude and timing of sinusoidal seasonal variation in

the transmission rate estimated by fitting the model to the

Fig. 1. Patterns of RSV activity across the United States for hospitalization and laboratory testing data. (A) Time series of weekly RSV
hospitalizations in select states. Raw hospitalization data is shown in blue, while the rescaled data accounting for the addition of an RSV-specific ICD-9
code in September 1996 is shown in green. (B) Age distribution of RSV hospitalizations across ten states. (C) Center of gravity of RSV activity in states
with at least ten consecutive years of laboratory reports. (D) Strength of biennial cycle in RSV activity, as indicated by the ratio of the biennial to
annual Fourier amplitude for laboratory report data.
doi:10.1371/journal.ppat.1004591.g001
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hospitalization data were both negatively correlated with mean

vapor pressure and mean precipitation (p,0.01), and positively

correlated with the amplitude and timing of PET in each state (p,

0.01) (Table 3). The seasonal offset parameter (illustrating timing

of peak transmissibility) was also significantly correlated with mean

minimum temperature (p,0.01). These parameter estimates were

also positively correlated (p,0.001) (S4 Table).

Fitting our model to the laboratory surveillance data for RSV

allowed for a more extensive analysis of the relationship between

state-specific climate indicators and the amplitude and timing of

seasonal variability in the transmission rate across a large number

of states with different climates. Since the laboratory data did not

contain the age of cases, we estimated R0 for each state based on

the observed relationship between R0 and population density prior

to fitting the model.

Again, we found significant negative correlations between the

amplitude and peak timing of RSV seasonal forcing (i.e.

seasonality in the transmission rate) and the mean vapor pressure,

minimum temperature, and precipitation across the 38 states (p,

0.0001) (Table 3, Fig. 3A-C), i.e. warmer, wetter states tended to

exhibit less seasonal variation and an earlier peak in the

transmission rate of RSV than cooler, drier states. We also found

a weaker but still significant positive correlation between the

amplitude of seasonal forcing and the amplitude of variation in

minimum temperature (p,0.005). Estimates for peak RSV

transmissibility, however, were not correlated with the timing of

the seasonal trough in minimum temperature or vapor pressure

(Table 3). A strong and significant positive correlation was

observed between both the amplitude and peak timing of RSV

seasonal forcing and the seasonal variation in PET (p,0.0001)

(Table 3, Fig. 3D). However, the state-to-state variability in the

timing of peak RSV transmissibility was more than twice the

observed variability in the timing of PET troughs (Fig. 3D).

The model was again able to capture the biennial pattern of

RSV epidemics apparent in some states. The correlation between

the observed and predicted ratio of the biennial to annual

periodicities, as estimated by Fourier analysis, was 0.89 (p,

0.0005). States with biennial RSV dynamics tended to have strong

seasonal forcing (b.0.25), which was associated with a large

amplitude of variation in PET and low minimum temperature,

Fig. 2. Transmission dynamic model for RSV and fit to age-specific hospitalization data. (A) Compartmental diagram illustrating the
structure of the model. White boxes represent infection states in the model, while grey boxes represent diseased/observed states (severe lower
respiratory disease, D, and observed cases, H). (B) Model fit to weekly RSV hospitalization data for California and Florida. The ICD9-CM coded
hospitalization data is shown in blue, the rescaled data is shown in green, and the fitted models are shown in red. (C) Age distribution of RSV
hospitalizations in California and Florida for hospitalization data and fitted models.
doi:10.1371/journal.ppat.1004591.g002
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vapor pressure, and precipitation (Fig. 3). In general, the ratio of

the biennial to annual Fourier amplitude was slightly greater in the

data than predicted by the models; this is likely due to random

year-to-year variability in the size of RSV epidemics, which is not

accounted for in our deterministic models.

It was not possible to explain unusually high or low RSV activity

within a given state, apart from the regular biennial patterns,

based on any of the climatic variables. Deviations from model-

predicted patterns (observed minus predicted monthly RSV lab

reports) were not significantly correlated with temperature, vapor

pressure, precipitation, or PET (p.0.05) (S4 Fig.). Furthermore,

we were not able to explain year-to-year variation in epidemic

timing and size by directly parameterizing variation in the

transmission rate based on weekly variations in PET (S1 Text).

Such a model also provided a poor fit to the data, as indicated by

the log-likelihood (S5 Table).

Discussion

The spatiotemporal pattern of RSV activity in the United States

is in stark contrast to that of influenza [40] and rotavirus [36],

despite the fact that all are imperfectly immunizing infections that

exhibit strongly winter-seasonal epidemics. Using a combination of

exploratory statistical analyses and dynamic modeling approaches,

we set out to better understand geographical differences in RSV

seasonality and periodicities across the US and pinpoint mean-

ingful associations with climate. Identifying causal relationships

between climatic variables and RSV patterns could be used to

build predictive models of RSV incidence, which would help

inform guidelines for timing of immunoprophylaxis. Our results

indicate that climatological factors, particularly in vapor pressure,

minimum temperature, precipitation, and PET, are strong

candidates to explain the seasonal pattern of RSV epidemics in

the United States. States with low mean vapor pressure, minimum

temperature, and precipitation and large seasonal variation in

PET tended to exhibit a later peak in the timing of RSV

transmission and stronger seasonal forcing, potentially leading to

biennial epidemics.

Seasonal variation in PET was more tightly linked to seasonal

variability in the transmission rate of RSV compared to other

climate factors. Potential evapotranspiration is a measure of the

demand for water from the atmosphere, and tends to be highest

during the summer and lowest during the winter months (Fig. 4B

and S5 Fig.). RSV is transmitted via droplets and respiratory

secretions, and tends to be rapidly inactivated in small aerosols

[41]. Therefore, PET may be correlated with the drying time of

respiratory secretions and thus virus survival, but more research is

needed in this regard.

Impact of climatic drivers on RSV
A number of studies have examined the statistical association

between climatic factors and RSV seasonality. Most studies have

found a significant association between temperature and RSV

activity using time series correlation; however, the direction of the

association is not consistent across studies, and such studies do not

control for the temporal dependence among observations. RSV

activity tends to occur in the coldest months in temperate regions

where winter outbreaks are common [6,13,18–20,22,42] and in

the warmest months in subtropical and tropical climates [16,25].

Low absolute humidity (proportional to vapor pressure) has been

found to be an important correlate of RSV activity in Spain [20].

Yusuf et al. [25] also observed significant correlations between dew

point (a measure of absolute humidity) and RSV activity across

nine cities worldwide, but again the association was negative in

temperate locations and positive in subtropical locales. Paynter

et al. [30] used a mathematical model to show that seasonality in

the transmission rate of RSV followed a similar pattern to rainfall

in the Philippines. Accordingly, the peak in RSV activity coincides

with the rainy season in a number of tropical locations [15,43]. It

may be that both colder temperatures and rain cause people to

Table 2. Transmission dynamic model parameters.

Parameter description Symbol Parameter value Source

Duration of maternal immunity 1/v 16 weeks [65]

Duration of infectiousness

First infection 1/c1 10 days [71,72]

Second infection 1/c2 7 days

Subsequent infection 1/c3 5 days

Relative risk of infection following

First infection s1 0.76 [37,66–68]

Second infection s2 0.6

Third infection s3 0.4

Proportion of infections leading to lower respiratory tract infection

First infection, ,6 months old dp,0 0.5 [37,66,69]

6–11 months old dp,0.5 0.3

1–2 years old dp,1 0.2

$2 years old dp,2 0.1

Second infection ds,a = 0.75*dp,a

Relative infectiousness

Second infections r1 0.75 [37,66,69]

Subsequent infections r2 0.51 Estimated

doi:10.1371/journal.ppat.1004591.t002
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aggregate indoors, thereby facilitating RSV transmission [6,44].

More studies are needed to tease apart the associations between

climate, human behavior, and infectious disease transmission.

Interestingly, our study is the first to explore the association

between PET and RSV dynamics.

Our US analysis indicates that mean vapor pressure, minimum

temperature, precipitation, and seasonal variation in PET are

good candidates to explain the timing of RSV activity across

different states in the US. However, states with higher minimum

fall temperature and vapor pressure tend to experience earlier

RSV activity, which is difficult to reconcile with the broad seasonal

patterns of this pathogen, which predominates in winter in

temperate regions. Furthermore, the estimated seasonal offset

parameters (i.e. timing of peak transmission) did not correspond

well with the timing of the seasonal trough in temperature and

vapor pressure across states. In contrast, the association between

RSV and PET is more consistent, as states with lower seasonal

variation in PET, lower average PET, and earlier wintertime PET

troughs tend to experience earlier and less strongly seasonal RSV

epidemics (Florida being the most extreme example). However, as

most climatic variables are typically highly correlated, it is difficult

to pinpoint a single driver of RSV dynamics with great certainty.

Climate variables may be a proxy for something else that affects

transmission, or there may be a more complex relationship

between climate and RSV transmission (e.g. non-linear or

threshold effects). Furthermore, most climatic conditions (includ-

ing PET) will vary between indoor and outdoor environments.

Additional analyses using similar methodological approaches in

different geographic settings and at different geographic scales

may be able to further disentangle the effect of various climatic

factors.

It is possible that the influence of climatic factors on RSV

seasonality may be modulated by other important factors that

affect the RSV transmission. Demographic factors such as

population density and crowding indices have been shown to be

associated with the length of the RSV season across different parts

of Colorado [45]. Birth rates have been shown to be an important

driver of the spatiotemporal pattern of rotavirus epidemics in the

United States [36], but do not appear to be correlated with the

timing of RSV epidemics. Changes in the birth rate in California

(which tended to be larger than within other states) may help to

explain why epidemics in this state transitioned from biennial

Table 3. Correlation coefficients between climatic variables and estimated seasonality parameters in RSV transmission model.

Hospitalization data Laboratory data

Climatic variable Amplitude of seasonality (b) Seasonal offset (Q) Amplitude of seasonality (b) Seasonal offset (Q)

Vapor pressure

Mean 20.832* 20.942*** 20.788*** 20.862***

Amplitude 20.511 20.600 20.307 20.437*

Offset 0.404 0.085 20.341 20.112

Minimum temperature

Mean 20.575 20.801* 20.760*** 20.782***

Amplitude 0.253 0.201 0.469* 0.404

Offset 20.114 20.431 20.341 20.119

Precipitation

Mean 20.844* 20.774* 20.760*** 20.733***

Amplitude 20.305 20.201 20.036 0.066

Offset 20.090 20.313 0.213 0.092

Potential evapotranspiration

Mean 0.212 20.030 20.104 20.184

Amplitude 0.810* 0.699 0.689*** 0.671***

Offset 0.802* 0.930** 0.611*** 0.787***

Wet days

Mean 20.537 20.361 20.487* 20.256

Amplitude 20.527 20.236 20.053 0.074

Offset 0.033 20.112 20.088 20.279

Cloud cover

Mean 20.388 20.134 20.091 20.006

Amplitude 0.385 0.479 0.470* 0.588**

Offset 20.824* 20.812* 20.554** 20.755***

Diurnal temperature range

Mean 20.388 20.134 0.522** 0.355

Amplitude 0.084 0.284 0.574** 0.493*

Offset 0.745 0.874** 0.582** 0.736***

*p,0.01, **p,0.001, ***p,0.0001.
doi:10.1371/journal.ppat.1004591.t003
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during the 1990s to annual during the 2000s; however, more work

is needed to understand how variation in birth rates and

transmission rates may impact RSV dynamics. Increased contact

rates among older siblings during school terms have also been

hypothesized to play an important role in determining RSV

seasonality [13,46], and have been shown to play in important role

for other respiratory infections [47–49]. However, we found that

incorporating school-term forcing did not improve the fit of our

model to the data (S1 Text, S6 Table). By modeling the

transmission dynamics of RSV, we are able to account for how

these factors may interact with other sources of seasonal forcing,

such as climatic factors, while controlling for the temporal

dependence in the data.

Relationship to previous mathematical models for RSV
Our findings are similar to those of other dynamic models of

RSV. White et al. [27] and Weber et al. [29] found that the

estimated amplitude of seasonal forcing was generally greater for

temperate locations and could explain the biennial pattern of RSV

epidemics in Turku, Finland. These biennial epidemic patterns, in

particular, cannot be explained by statistical associations alone;

they result from the dynamic feedback that occurs when an annual

seasonal forcing leads to an ‘‘overshooting’’ of the susceptible

population in the big epidemic years, leaving fewer susceptible

individuals who can be infected the following year. We build on

these previous analyses by fitting our model to a large number of

states with different climates. As such, we are able to correlate

differences in the estimated seasonal forcing parameters for various

states to climatological differences. Our estimates of the amplitude

of seasonal forcing are greater than those of the best-fit model of

White et al. [27], but similar to those of Weber et al. for Florida

and sites that exhibit biennial epidemics (e.g. Montana and

Finland) [29].

Fitting our model to the age-specific hospitalization data gave us

more power to estimate R0 compared to previous dynamic models,

which were fit to data aggregated across age groups. Our estimates

of R0 = 8.9–9.2 were similar to those obtained by White et al.

(2007) for their best-fitting model, and were slightly higher than

those obtained by Weber et al. (2001) for a similar model structure.

Any discrepancies can likely be explained by differences in

parameter assumptions. For example, unlike Weber et al. (2001),

we assume a decrease in the duration of infectiousness and severity

of repeated infections. This relatively high value of R0 suggests that

controlling RSV transmission will require substantial effort.

Climate change, in particular an increase in average annual

temperature, has been hypothesized to be responsible for

shortening the RSV season in England [17]. However, a shift

towards earlier RSV epidemics has also been observed in São

Paulo, Brazil, which cannot be attributed to changes in climate

[13]. A similar shift towards later epidemics has been noted

elsewhere [45]. We also observed some changes in the timing of

RSV activity in the US, mostly towards earlier RSV activity, but

these patterns do not appear to be linked to climate trends (S7

Table).

Caveats and future directions
An important limitation of our analyses is that we did not have

data on the genetic strains of RSV causing cases over time and

Fig. 3. Relationship between estimated seasonality parameters for model fit to laboratory report data and select climatic factors.
The estimated amplitude of seasonal forcing in RSV transmission (top) and the estimated seasonal offset parameter (bottom: Q = 0 represents January
1 and Q = 20.2 represents October 19) is plotted against (A) annual mean vapor pressure (hecta-Pascals), (B) annual mean minimum temperature (uC),
(C) annual mean precipitation (mm/month), and (D) amplitude (relative to the annual mean) and timing of trough in potential evapotranspiration
(PET; 0 = January 1, 0.1 = February 6). The colorbar on the right indicates the ratio of the biennial to annual Fourier amplitude for the observed data
(outer circle) and fitted model (inner diamond). Select states are labeled: Arizona (AZ), Florida (FL), Georgia (GA), Hawaii (HI), Louisiana (LA), Montana
(MT), New York (NY), South Dakota (SD), Texas (TX), Wyoming (WY).
doi:10.1371/journal.ppat.1004591.g003
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among different states. Therefore, we did not explicitly model the

interaction of RSV types A and B, which White et al. (2005) found

could help explain differences in the transmission dynamics of

RSV in England and Wales and Turku, Finland. It is possible that

strain cycling may help to explain between-year deviations from

model-predicted epidemic patterns, for which we did not find any

correlation with climatic factors (S4 Fig.). However, the interaction

among different subtypes of RSV is unlikely to be the main driver

of differences in the seasonality and periodicity of RSV activity

among different states. In cities with biennial RSV activity, a single

subtype has been observed to predominate for two years (i.e.

through both an early-big and late-small season) prior to being

replaced by the other subtype [50–52]. Furthermore, no

association was observed between subtype predominance and

epidemic severity and timing over 15 years in one US city [53].

Another limitation is that we assumed age-specific population

mixing patterns were equivalent to those in the Netherlands [54],

since no such broadly based studies have been conducted in the

United States. Population mixing patterns were broadly similar

across a variety of European countries [55], and are likely to be

similar in the United States. However, the Netherlands appears to

have slightly higher contact rates among 0–4 year olds compared

to other countries such as the United Kingdom [54,56]. This may

have influenced our estimates of R0, as well as limited the potential

impact of school-term forcing in helping to explain the spatio-

temporal pattern (S1 Text). Similar studies of population mixing,

and how such patterns vary seasonally, should be conducted in the

United States. Also, the lack of age detail in the laboratory report

data limited our ability to directly estimate R0 for all states

included in the analysis.

Finally, our epidemiological datasets were prone to changes in

reporting and coding practices, and these datasets captured only a

fraction of all RSV infections. We elected to use very specific RSV

outcomes to have an accurate picture of the age distribution of

RSV cases, and addressed sensitivity issues by rescaling the data to

remove time trends and incorporating an estimated reporting rate

in our transmission model. Importantly, sensitivity analyses

indicate that our results are robust to the rescaling method and

that RSV-specific hospital admissions align well with broader

outcomes such as bronchiolitis (S8 Table, S6–S7 Fig.).

One potential hypothesis that follows from this study, which

may help to explain why RSV activity in the US begins in Florida

(particularly southeastern Florida [9]), is that less variable climatic

conditions in Florida combined with high population density in

cities such as Miami allows for year-round persistence of RSV. In

contrast, other states may experience routine fadeouts of RSV

infection during the summer months. If this were the case, then

peak RSV activity in Florida could begin as soon as climatic

conditions (and population mixing) favored a slight increase in

transmissibility of the virus, whereas other states may be

dependent on outside introduction of the virus once the effective

reproductive number (Re = R0 x the proportion susceptible) is

greater than 1. Indeed, White et al. (2007) observed frequent

fadeouts of infection in a stochastic version of their best-fitting

model, particularly in temperate settings. The role of fadeouts in

the spatiotemporal dynamics of RSV could be explored using a

stochastic metapopulation model informed by local rather than

state-aggregate data, which is an important direction for future

research. The availability of detailed data and large variability in

climate make the United States a very useful test case for this.

Further, it would be interesting to compare the results with

Europe, where strain typing has also been performed. Finally, a

more detailed understanding of the spatial transmission of this

disease could be obtained by fitting phylogeographic models to

large-scale viral sequencing data [57]. Such models were

instrumental in elucidating the migration patterns of the

influenza virus over the past decade [58], but require a large

amount of well-sampled molecular data, which are not yet

available for RSV.

We have been able to demonstrate that mean vapor pressure,

temperature, and precipitation as well as seasonal fluctuations in

PET are correlated with seasonal variation in the transmission rate

of RSV; these factors could help to explain differences in the

strength of RSV seasonality across the different regions of the

United States. Stronger seasonal forcing can also drive the

occurrence of biennial patterns of RSV activity. However, the

rationale behind why RSV epidemics tend to begin in the

southeastern United States remains elusive. Our analysis highlights

the role of potential evapotranspiration as a previously unidenti-

fied correlate of RSV transmission. A better understanding of the

relationship between PET and RSV survival may help predict the

timing of RSV activity across the United States and further guide

the optimal timing of prophylaxis. More importantly, a more

detailed mechanistic understanding of RSV transmission dynamics

will be crucial to help predict the impact of RSV vaccination

programs, as vaccine candidates are currently undergoing clinical

trials.

Fig. 4. Monthly patterns of RSV activity and potential
evapotranspiration. (A) The mean number of RSV hospitalizations
per 100,000 total population per month for select states, beginning in
July. (B) The monthly mean potential evapotranspiration (mm/day) is
plotted for each state.
doi:10.1371/journal.ppat.1004591.g004
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Materials and Methods

Data sources
We examined the spatiotemporal pattern of RSV activity in the

United States using two sources of weekly epidemiological data: (1)

age-specific hospitalizations with any mention of RSV from ten

State Inpatient Databases (SIDs) of the Healthcare Cost and

Utilization Project (HCUP), from January 1989 to December 2009

for nine states (Arizona, California, Colorado, Iowa, Massachu-

setts, Maryland, New Jersey, Washington, and Wisconsin) and

from 1989–1996 and 2005–2009 for Florida, and (2) laboratory

reporting of the number of RSV-positive tests (by any detection

method) from the National Respiratory and Enteric Virus

Surveillance System (NREVSS), for which 38 states had at least

10 consecutive years of consistent data between July 1989 and

May 2010.

Hospitalization data. Age-specific data on hospitalizations

for RSV were obtained from the State Inpatient Databases (SIDs)

of the Healthcare Cost and Utilization Project (HCUP) main-

tained by the Agency for Healthcare Research and Quality

(AHRQ) through an active collaboration with AHRQ. All hospital

discharge records from community hospitals in participating states

are included in the database. HCUP databases bring together the

data collections efforts of State data organizations, hospital

associations, private data organizations, and the Federal govern-

ment to create a national information resource of encounter-level

health care data [59]. We extracted all hospitalization records that

included the International Classification of Diseases 9th revision,

Clinical Modification (ICD-9-CM) code for RSV (079.6, 466.11,

480.1) in any position among up to 15 discharge diagnoses that

were consistently available. We extracted data on the age of the

patient (in 1-year age categories from 0–4 years old and 5-year age

categories from 5–9 years to $95 years old), week and year of

admission, and hospital state. We also extracted data on

hospitalizations for bronchiolitis (ICD-9-CM 466.1) for compar-

ison, but focused our analysis on the RSV-specific hospitalization

data; for the purposes of fitting models to the seasonal pattern and

age distribution of RSV cases, the specificity of the diagnosis is

more important than the sensitivity.

We limited our analysis to the nine states that had data available

from January 1, 1989 to December 31, 2009: Arizona, California,

Colorado, Iowa, Massachusetts, Maryland, New Jersey, Washing-

ton, and Wisconsin. We also included Florida in our analysis

because of its unusual seasonal pattern, even though data was not

available from 1997–2004.

The RSV-specific ICD-9 code for acute bronchiolitis [466.11]

was introduced in September 1996, leading to a large increase in

RSV-coded hospitalizations (Fig. 1). To account for this change,

we calculated a correction factor for each state equal to the mean

number of RSV hospitalizations per week from 1997 to 2009 over

the mean number of weekly RSV hospitalizations from 1989 to

1995. We then multiplied the pre-September 1996 hospitalization

time series by the state-specific correction factor. Since we had

limited data for Florida, we multiplied the pre-September 1996

hospitalization data by the mean under-reporting factor for the

other nine states. The adjusted number of RSV-specific hospital-

izations was similar to the rate of bronchiolitis hospitalizations in

children ,5 years old before and after September 1996 (S5 Fig.).

Laboratory reporting of RSV. Data on laboratory reporting

of RSV tests by state (including the District of Columbia) from July

1989 to May 2010 were obtained from NREVSS. A map and list

of current participating laboratories can be found on the NREVSS

website (http://www.cdc.gov/surveillance/nrevss/labs/default.

html). We included RSV detections by all three diagnostic

methods collected in NREVSS: antigen detection, reverse

transcription polymerase chain reaction (RT-PCR) and viral

culture. While the use of these different diagnostic methods has

varied over time, so long as they do not vary seasonally (and in

different ways in different states), this variation in testing methods

should not bias our analysis. We limited our analysis to states with

at least 10 consecutive years of consistent reporting (defined as $

100 RSV tests, $10 RSV-positive samples, and ,15 consecutive

weeks in which no laboratories reported results to NREVSS

annually). The resulting dataset consisted of 38 states; the total

number of RSV-positive samples by state ranged from 587

(District of Columbia) to 65,232 (Texas).

We rescaled the laboratory data on the number of RSV-positive

tests to account for changes in testing practices over time. First, we

calculated a two-year moving average of the weekly number of

RSV tests (both positive and negative specimen results) in each

state. We then calculated a weekly scaling factor equal to the

average number of RSV tests for the state during the entire period

of consistent reporting divided by the two-year moving average (S6

Fig.). The rescaled number of RSV-positive tests was then

estimated to be the reported number of positive tests times the

scaling factor (S6 Fig.). We estimate a ‘‘reporting fraction’’ (h)

when fitting the dynamic model to the laboratory data (see

‘‘Dynamic model description’’ below); hence, we do not need to

know the exact level of reporting so long as it is consistent through

time.

In some states, there may have been changes in the geographic

distribution of laboratories that report to NREVSS over time. This

could have affected the spatiotemporal pattern of epidemics

observed within that state, e.g. if there was greater (or less)

representation of rural areas over time, which may have slightly

different timing of RSV activity than urban centers. However,

since we are fitting our model to capture the average timing of

epidemics over time (for at least 10 years), the impact on our

conclusions regarding the overall spatiotemporal pattern of RSV

activity across states should be minimal.

Demographic data. The initial population size for each state

was obtained from the 1990 US census data [60]. We assumed the

birth rate varied between states and over time, according to data

on the crude annual birth rate for each state from 1990 to 2009

[61]. Individuals were assumed to age exponentially into the next

age class, with the rate of aging equal to 1/(width of the age class).

We divided the ,1 year age class into 12-month age groups to

more accurately capture aging among this important age class (in

which .70% of cases occur). The remaining population was

divided into 6 classes: 1–4 years old, 5–9 years, 10–19 years, 20–39

years, 40–59-years, and 60+ years old. We assumed deaths

occurred from the last age class and adjusted the net rate of

immigration/emigration and death from other age groups in order

to produce a rate of population growth and age structure similar to

that of the US.

Climate data. Monthly climatic data were obtained from

worldwide climate maps generated by the interpolation of climatic

information from ground-based meteorological stations with a

monthly temporal resolution and 0.5u latitude by 0.5u longitude

spatial resolution (update CRU TS 3.0 0.5u, available from http://

badc.nerc.ac.uk/view/badc.nerc.ac.uk__ATOM__dataent_12562

23773328276) [62]. The climatic variables used were precipita-

tion, monthly average of daily minimum and maximum temper-

atures, average temperature, diurnal temperature range, potential

evapotranspiration (PET), average number of wet days (days with

.1 mm of rain), cloud cover, and vapor pressure. These monthly

climatic variables were extracted from the pixels with more than

10,000 inhabitants, within each US state for the period from 1994
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to 2004. Weekly time series were derived from the monthly data

using linear interpolation. Climatic information was extracted and

checked for consistency using scripts written in MATLAB version

7.5.0 (MathWorks, Natick, MA) specifically for this purpose.

As a sensitivity analysis, we also extracted daily data for all

weather indicators from the National Oceanic and Atmospheric

Administration’s North American Regional Reanalysis (http://

www.esrl.noaa.gov/psd/data/gridded/data.narr.html). We only

considered the 30 by 30 km pixel corresponding to the census-

determined population center of each state, and aggregated daily

data at the weekly level from January 1, 1989 to December 31,

2010. Despite the different temporal and geographic resolution

and data sources, the two datasets were highly correlated

(r = 0.95–0.99 for temperature and PET, r.0.75 for all other

indicators), and the results of our analyses remained qualitatively

the same (S2 Table and S8 Table).

Exploratory analyses of putative environmental drivers
Summary measures describing the seasonal variation in

temperature, PET, and vapor pressure, including the mean value,

relative amplitude of seasonal fluctuations, and seasonal offset,

were derived by fitting harmonic curves to the climatic time series

(S5 Fig.). We also calculated mean monthly and weekly values for

all climatic variables in each state, and used these to estimate

deviations from the average state-specific climatology.

We obtained two complementary measures of RSV epidemic

timing, based on the center of gravity (mean epidemic week, where

each week is weighted by the number of cases—S1 Text, [36]) and

phase decomposition obtained from wavelet analysis [40,63]. In

the wavelet analysis, we used the 0.8–1.2 year periodicity band

from the wavelet spectrum to extract weekly phases, and

calculated the difference between phase in Florida, where RSV

epidemics are earliest, and phases in the other states, averaged

throughout the study period.

Following earlier work [36,64], we estimated the statistical

association between empirical seasonal patterns of RSV and

climate factors using univariate and stepwise multivariate regres-

sion models, with RSV timing as the outcome (center of gravity or

phase difference with Florida), and climate variables as predictors.

Monthly climate predictors were summarized as annual and

seasonal means; since fall (September-November) climate values

were most strongly associated with RSV, we do not report

regression results for the other seasons here. We also considered

demographic (birth rate, population size and density), geographic

(latitude, longitude), and sampling (number of RSV tests) factors in

multivariate regression models. Finally, time trends in climate and

RSV seasonal characteristics were assessed by linear regression

using year as a potential predictor.

Dynamic model description
We developed an age-structured SIRS model to describe the

transmission dynamics of RSV (Fig. 2A). The model assumes

individuals are born with protective maternal immunity (M),

which wanes exponentially (with a mean duration of 3–4 months)

[65], leaving the infant susceptible to infection (Sn, where n is the

number of previous infections). Following infection with RSV,

individuals develop partial immunity, which reduces the rate of

subsequent infection and the duration and relative infectiousness

of such infections, consistent with epidemiological studies and

previous models of RSV transmission [26,27,29]. We assume a

progressive build-up of immunity following one, two, and three or

more previous infections (In) [37,66–68]. Both age and number of

previous infections were assumed to influence the risk of

developing severe lower respiratory disease (D) possibly requiring

hospitalization [37,66,69]. We parameterized the model based on

data from cohort studies conducted in the US and Kenya

(Table 2) [37,38,66–72]. Transmission-relevant contact patterns

were assumed to be frequency-dependent and were parameterized

based on self-reported data on the number and age of

conversational partners from one European study [54,55]; no

such study has been conducted among a widely representative

cohort in the US.

We initially fit our model to the age-stratified hospitalization

data from all nine states with complete data from 1989–2009 in

order to estimate the mean transmission rate, relative infectious-

ness of first and second versus subsequent infections, seasonality

parameters, and reporting fraction (i.e. proportion of individuals

with severe lower respiratory tract disease who are hospitalized,

coded as RSV, and reported in our dataset), which are key

unknown parameters. We then fixed the relative infectiousness and

fit the model to the hospitalization data from each of the nine

states plus Florida individually, using the other estimated

parameters from the cumulative data fit as our starting conditions

to estimate state-specific transmission rates, seasonality parame-

ters, and reporting fractions. For each fit, we seeded the model

with one infectious individual in each age group and used a burn-

in period of 40 or 41 years, examining the fit using both even- and

odd-year burn-in periods to allow for the biennial pattern of

epidemics present in some states, and selected the best-fitting

model for each state. We also explored longer burn-in periods and

examined the model output to ensure that the equilibrium quasi-

steady state had been reached.

Seasonality in the instantaneous rate of transmission of RSV

was modeled using sinusoidal seasonal forcing with a period of 1

year (52.18 weeks) as follows: b(t)~b0 1zbcos(2p(t{w))ð Þ, where

b0 is the baseline transmission rate, b is the amplitude of

seasonality, and Q is a seasonal offset parameter (a measure of

timing of peak transmissibility), and t is the time (in years) [31,32].

We constrained Q to be between 20.5 and 0.5, where Q = 0

represents January 1 and Q = 20.5 and Q = 0.5 both represent July

1. These parameters were estimated by fitting our model to the

state-specific data.

We used maximum likelihood to determine the best-fitting

models. For each set of parameters, the likelihood of the data given

the model was calculated by assuming the number of hospitaliza-

tions in each age class (a) during each week (w), xa,w, was Poisson-

distributed with a mean equal to the model-predicted number of

severe lower respiratory tract infections due to RSV (Da,w) times

the reporting (or hospitalized) fraction (h), x̂xa,w~hDa,w, as has

been described previously [27,36]. The log-likelihood (log(L)) of

the model was given by the equation:

log (L)~
X

w

X
a

{x̂xa,wzxa,w log x̂xa,w{
Xxa,w

j~1

logj

 !

While this observation model may fail to capture the true

variability in the distribution of cases, other observation models

(e.g. negative binomial) would require estimating an additional

parameter, which we do not feel is justified. We used the

‘‘fminsearch’’ command in MATLAB v7.14 (MathWorks, Natick,

MA) to minimize the –log(L), which employs a direct simplex

search method.

Next, we fit the model to the laboratory data on RSV-positive

tests from 38 states. The laboratory data did not contain detail on

the age of cases; therefore, we could not derive reliable estimates of

the baseline transmission rate by fitting our model to these data,
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since estimates of the baseline transmission rate and reporting

fraction are inherently confounded. (The age distribution of cases,

pattern of epidemics, and mean incidence rate inform estimates of

the baseline transmission rate, while the mean incidence also

informs estimates of the reporting fraction.) Instead, we estimated

the baseline transmission rate for each state from the relationship

we observed between population density and R0 among the ten

states with hospitalization data (S3 Fig.). We fixed the R0 for the

District of Columbia at the maximum observed R0 (for New

Jersey). We then estimated the amplitude of seasonality, seasonal

offset parameter, and reporting fraction by fitting our model to the

rescaled laboratory data. We examined the sensitivity of our results

to the method we used to correct for changes in testing and

reporting effort for RSV over time by also fitting our model to the

raw number of RSV-positive tests reported, instead applying the

estimated scaling factor to the model output (i.e. dividing the

model output by the scaling factor for each week). The log-

likelihoods of the fitted models were similar (S5 Table), and the

results were qualitatively the same (S8 Table).

We examined the correlation between the estimated model

parameters for each state and the significant climatic variables

from the univariate statistical analyses. We calculated the

Pearson’s correlation coefficient and associated p-value for each

state-specific parameter estimate and climatic variable of interest.

We also examined the ability of the model to capture the biennial

pattern of RSV epidemics present in some states by comparing the

strength of the biennial cycle in the observed and predicted RSV

time series. The strength of the biennial cycle was calculated as the

ratio of the biennial to annual Fourier amplitude [73,74]. Finally,

we examined whether monthly deviations from average climatic

conditions could help explain the difference between observed and

predicted monthly RSV activity across states.

Supporting Information

S1 Fig. Fit of transmission dynamic model for RSV to
age-specific hospitalization data. The rescaled weekly

hospitalization data (accounting for the change in reporting

practices that occurred in September 1996) is shown in blue, while

the fitted models are shown in red. Age distributions of RSV

hospitalizations among children ,5 years of age are also shown for

the data and fitted models.

(EPS)

S2 Fig. Plots of weighted univariate regression models
of RSV timing against key climatic predictors, where
weights are defined as 1/variance in timing estimates.
Timing is based on the center of gravity in RSV activity in weekly

laboratory-surveillance reports in 50 states and DC (blue dots),

averaged over 21 epidemics 1989–2010 (vertical red bars represent

variance). Climate variables are averaged over the fall period for

(A) vapor pressure (hecta-Pascals), (B) minimum temperature (uC),

and (C) potential evapotranspiration (mm/day). Blue lines

represent predicted values and shaded areas represent 95% CI.

See Table 1 for parameter estimates.

(TIF)

S3 Fig. Relationship between the basic reproductive
number and population density. The value of R0 estimated

by fitting the transmission dynamic model to the age-specific

hospitalization data is plotted against the population density for

each state. The dots are color-coded according to the mean center

of gravity of RSV activity in each state, as indicated by the color bar.

(EPS)

S4 Fig. Analysis of transmission model residuals.
Deviations from model-predicted patterns (observed minus

predicted monthly lab reports for October to April) for 38 states

versus (A) monthly minimum temperature minus average state-

specific minimum temperature for that month, (B) monthly vapor

pressure minus average vapor pressure, (C) monthly precipitation

minus average precipitation, and (D) monthly potential evapo-

transpiration minus average potential evapotranspiration at lags

of 0 and 1 month between the case time series and the climate

time series.

(EPS)

S5 Fig. Seasonal variation in climatic variables. Average

monthly values for the years 1994 to 2004 (solid lines) and sine

curves fitted to the monthly averages (dotted lines) are plotted for

each of the climate variables for select states.

(EPS)

S6 Fig. Comparison of data on weekly hospitalizations
for RSV and acute bronchiolitis. (A) The adjusted number

hospitalizations for RSV (ICD-9-CM 079.6, 466.11, 480.1) per

week in California (blue) is plotted along with the number of

hospitalizations for acute bronchiolitis (ICD-9-CM 466.1) for

all age groups (pink) and for children ,5 years old (light blue).

(B) The age distribution of patients ,5 years old hospitalized

with a diagnosis of RSV (blue) or acute bronchiolitis (light

blue). (C) The age distribution of patients of all ages

hospitalized with a diagnosis of RSV (blue) or acute bronchi-

olitis (pink).

(EPS)

S7 Fig. Rescaling of laboratory data to account for
changes in RSV reporting over time. (A) The number of

weekly RSV-positive tests for South Dakota (left) and Florida

(right) for the entire period from July 1989 to June 2010 (cyan)

and the period with consistent reporting (defined as $100 RSV

tests/year, $10 RSV-positive samples/year, and ,15 consec-

utive weeks/year in which no laboratories reported results to

NREVSS) (blue). (B) The total number of tests for RSV

(positive and negative) by week (blue), along with the 2-year

moving average number of tests for each week (red) and mean

number of tests per week across the entire period with

consistent reporting (green). (C) Rescaled number of RSV-

positive tests, where the scaling factor is equal to the mean

number of tests over the entire period with consistent reporting

(green line in B) divided by the weekly moving average number

of tests (red line in B). The rescaled number of weekly RSV

hospitalizations for Florida are plotted in grey (on the right axis)

for comparison.

(EPS)

S1 Table Correlation between RSV hospitalizations and
laboratory reports (rescaled number of RSV-positive
specimens) for states with both types of data.

(DOCX)

S2 Table Sensitivity analysis on climate variables:
univariate regression of timing of RSV activity against
climatic indicators derived from weekly data. (Same as

Table 1 but using weekly climatic data for the population center of

each state from the NOAA/NARR reanalysis dataset.) Separate

models are built for phase timing (average weekly phase difference

with Florida, the earliest RSV state) and center of gravity

(weighted average of RSV epidemic week, where each week is

weighted by the number of RSV cases). All epidemic measures are

based on weekly laboratory-reported RSV time series. Results are

provided for climate indicators summarized annually or during the
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fall period. Boldface indicates significance (p,0.05) in the

exploratory analysis. As in Table 1, specific humidity (also known

as vapor pressure) and temperature and are the strongest

univariate predictors of RSV timing. Stepwise multivariate

regression consistently indicates that specific humidity is the

strongest predictor of RSV timing, consistent with S3 Table.

(DOCX)

S3 Table Stepwise multivariate regression of RSV
timing in 50 US states and District of Columbia. Two

indicators of timing are considered as outcome: phase extracted

from the 1-year component of reconstructed wavelet decomposi-

tion (average weekly phase difference with Florida; see methods)

and center of gravity (see earlier description in supplement). The

potential explanatory variables are listed in Table 1. p-value for

entry,0.20; p-value for remaining in model ,0.05.

(DOCX)

S4 Table Correlation among estimated parameters for
the transmission dynamic model.

(DOCX)

S5 Table Comparison of baseline transmission dynam-
ic model to model with the transmission rate directly
proportional to PET. Log-likelihood of model fit to the

laboratory report data from 38 states using sinusoidal seasonal

forcing versus modeling the transmission rate as directly

proportional to weekly variations in PET.

(DOCX)

S6 Table Comparison of baseline transmission dynam-
ic model to model including school-term forcing. Log-

likelihood of transmission dynamic model fit to hospitalization

data from 10 states using sinusoidal seasonal forcing alone versus

including both school-term and sinusoidal seasonal forcing of the

transmission rate.

(DOCX)

S7 Table Time trends in climate variables for the 50 US
states plus District of Columbia, 1994-2004 based on the

monthly CRU climate dataset. Only states with significant

trends (p,0.05) are listed.

(DOCX)

S8 Table Sensitivity of correlation between seasonality
parameters and climatic variables to method of rescal-
ing laboratory data and resolution of climate data.
Correlation coefficients between estimated seasonality parameters

of model fit to laboratory data with scaling factor applied to model

output and sine curves fit to the monthly (CRU) and weekly

(NOAA) climate data.

(DOCX)

S1 Text Supplementary methods.
(PDF)
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