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Abstract

Lipoylation is a rare, but highly conserved lysine posttranslational modification. To date, it is 

known to occur on only four multimeric metabolic enzymes in mammals, yet these proteins are 

staples in the core metabolic landscape. The dysregulation of these mitochondrial proteins is 

linked to a range of human metabolic disorders. Perhaps most striking is that lipoylation itself, the 

proteins that add or remove the modification, as well as the proteins it decorates are all 

evolutionarily conserved from bacteria to humans, highlighting the importance of this essential 

cofactor. Here, we discuss the biological significance of protein lipoylation, the importance of 

understanding its regulation in health and disease states, and the advances in mass spectrometry-

based proteomic technologies that can aid these studies.

Graphical abstract

Introduction

Lipoamide is a cofactor central to cellular metabolism [1,2]. Present as a lysine 

posttranslational modification (PTM) on essential multimeric metabolic complexes, this 
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functional group is required for the enzymatic activities of these protein complexes [3,4]. 

For example, the pyruvate dehydrogenase (PDH) and alpha-ketoglutarate (KDH) complexes 

regulate distinct carbon entry points into the central metabolic pathway of the TCA cycle. 

On both complexes, lipoylation is critical for proper enzyme function, and removal of this 

modification is part of a cellular mechanism to inhibit their activities. The evolutionary 

conservation of these lipoylated metabolic enzymes in organisms ranging from bacteria to 

mammals [2,5,6] underlines the critical role of lipoylation in core metabolic pathways. This 

theme of conservation is seen across the lipoylated complexes, the proteins that add or 

remove this modification, as well as the function of lipoylation [4-8]. Given this striking 

evolutionary conservation for this rare modification, it is perhaps not surprising that these 

lipoylated enzymes are critically linked to maintenance of health and development of 

disease. PDH dysregulation is known to contribute to numerous human metabolic disorders, 

cancer, viral infection, and Alzheimer's disease [9-13]. Therefore, advancing the current 

understanding of the regulation of lipoylation is necessary for defining the underlying 

molecular causes of these diseases. The low frequency and unique physical characteristics of 

lipoylation may also offer a therapeutic target for regulating metabolic activities that are 

disrupted in disease states. Here, we review the function and regulation of protein 

lipoylation, the importance of understanding its dysregulation, the gap in the knowledge 

regarding these regulatory mechanisms, and the advanced technologies that can aid these 

studies. Recent developments in proteomics, such as improvements in quantitative mass 

spectrometry and ion mobility, promise to provide new ways to investigate lipoylation in 

different cell types, tissues, and biological contexts.

Biochemical Structure and Function

Lipoylation is a posttranslational modification that involves the covalent attachment of 

lipoamide to a lysine residue via an amide bond [1,2,5,14-16]. The lipoamide cofactor is an 

eight-carbon organosulfurous molecule, with C6 and C8 attached to sulfur atoms in a 

pentatomic ring (Fig 1A). Lipoic acid can have two enantiomeric forms, although only the 

R(+) form is reactive and produced endogenously [17,18]. Given the large size of lipoyl, for 

example greater in mass than acetylation or phosphorylation, this modification has the 

ability to both impact protein structure and provide a “swinging arm” function for enzymatic 

reactions [19]. The rotational flexibility of this functional group allows it to move between 

different subunits within the enzyme complex [3,4]. This function facilitates substrate 

channeling and electron transfer during oxidation-reduction reactions. It has been shown to 

catalyze reactions including hydrogen transfers, decarboxylation and other acyl group 

transfers [14,15].

Unlike other posttranslational modifications that are dependent upon local amino acid 

motifs, substrate lipoylation does not seem to be significantly impacted by mutations of 

conserved amino acids flanking the modified lysine [20]. Instead, lipoylated domains seem 

to be better defined by their three-dimensional structure, consisting of around 80 amino 

acids folded into two anti-parallel beta-sheets that form a flattened beta barrel [21].
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Metabolic Roles of Lipoylated Complexes

To date, only four lipoylated protein complexes have been identified in mammals and a fifth 

in bacteria [4,6] (Fig 1). Despite this rare occurrence, the modified metabolic enzymatic 

complexes act as linchpins in maintaining proper mitochondrial function. One of the best 

understood complexes is the PDH, which regulates an important step in glycolysis, the 

conversion of pyruvate into acetyl-coA prior to its entry in the TCA cycle (Fig 1B). This 

reaction is a primary entry point for carbohydrates into the citric acid cycle, connecting the 

anaerobic process of glycolysis to the higher-yield oxidative production of ATP. In 

mammals, PDH has two lipoylated subunits, with the E2 subunit (DLAT) possessing two 

lipoylated lysine residues and the binding protein (PDHX) possessing one. A single PDH 

complex has a core composed of 60 DLAT molecules non-covalently bound to an outer shell 

formed of PDHX, E1 and E3 subunits [3]. In bacteria, PDH has only the E1, E2 and E3 

subunits, and some structural variations exist between types of bacteria. Gram positive 

bacterial PDH generally contains an icosahedral core of 60 DLAT subunits, each with one 

lipoylation site. Gram negative bacterial PDH generally contains an octahedral core of 24 

DLAT subunits, each with two to three lipoylation sites [4]. In both bacteria and eukaryotes, 

the lipoyl swinging arms on the PDH E2 core interact with E1 and E3 subunits on the PDH 

exterior to catalyze the decarboxylation of pyruvate and acyl activation of coenzyme A 

[1,4,16]. It has long been established that a regulatory mechanism of PDH activity is 

provided by the phosphorylation of its E1 subunit by the pyruvate dehydrogenase kinase 

(PDK), which inhibits its activity [22]. This knowledge was more recently expanded by the 

finding that inhibition via delipoylation provides another point of regulation [7]. A second 

lipoylated complex with activity related to PDH is the acetoin dehydrogenase complex 

(AoDH); like PDH, AoDH also produces acetyl-CoA. AoDH is only found in bacteria, and 

is responsible for the catabolism of the acetoin energy storage molecule into acetyl-CoA and 

acetylaldehyde [23,24].

In addition to PDH, the lipoylated enzyme KDH regulates the incorporation of an alternative 

carbon source to glucose into the TCA cycle, catalyzing the decarboxylation of alpha-

ketoglutarate to form succinyl-CoA [25]. Similar to PDH, removal of lipoylation from KDH 

has been shown to inhibit its enzymatic activity in bacteria [8].

A third conserved lipoylated complex in mammals is the branched-chain alpha-ketoacid 

dehydrogenase complex (BCKDH). Similar in structure to both PDH and KDH, it contains a 

core of either 24 or 60 E2 lipoylated subunits surrounded by E1 and E3 subunits [26,27]. 

BCKDH is responsible for the irreversible decarboxylation step in branched-chain amino 

acid catabolism, and it is known to be inhibited by phosphorylation of its E1 subunit [28]. 

The impact of delipoylation on its activity remains to be determined.

The fourth known lipoylated enzyme complex in mammals is the glycine cleavage system 

(GCV), responsible for the reversible decarboxylation of glycine in both bacteria and 

eukaryotes. It is composed of four subunits, including a lipoylated H protein [4,6]. While it 

does not produce a direct input into the TCA cycle, this mitochondrial enzyme plays a 

critical role in glycine catabolism, and can also act in serine catabolism [29]. Together, these 
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multimeric lipoylated enzymes regulate core cellular metabolic pathways, making the 

regulation of their functions via lipoylation critical for mitochondrial health.

Synthesis and Regulation

The addition of lipoyl modifications to substrates has been best characterized in Escherichia 
coli, and shown to occur via two independent pathways [5,6,30] (Fig 1A). The first pathway 

involves the scavenging and incorporation of exogenous lipoic acid onto proteins through a 

series of reactions catalyzed by the protein LplA. In these reactions, free lipoic acid is 

activated by ATP to form lipoyl-AMP, which is then transferred to a lysine side chain 

[21,31]. An independent pathway entails the biosynthesis of lipoic acid from the eight-

carbon fatty acid octanoic acid, donated by the lipoyl/octanoyl-acyl carrier protein [32]. 

Through this mechanism, the enzyme LipB catalyzes the transfer of octanoic acid to the 

protein lipoyl domain. Two sulfur atoms are then inserted at C6 and C8 by the enzyme LipA 

to form a complete lipoamide prosthetic group [33,34].

Eukaryotes, including mammals, possess mitochondrial homologues of LplA, LipA and 

LipB [35]. Although initially presumed to rely primarily on environmentally-obtained lipoic 

acid, several studies have demonstrated the essential role of de novo lipoic acid synthesis in 

mammals [36,37]. In addition, lipoylated PDH is conserved in the plastids of plants and 

fungi [38], raising questions as to whether lipoylated products are produced and then 

exported from the mitochondria or whether plant and fungi cells might possess multiple sites 

of lipoylation. The presence of plastid LipA and LipB, but not LplA, homologues suggests 

that the plastid is another site of de novo lipoic acid synthesis [39,40].

While lipoic acid synthesis and protein lipoylation have been examined in multiple 

kingdoms of life, until recent years only one protein was known as a lipoamidase, i.e., acting 

to remove lipoyl modifications. This was the protein Lpa in Enteroccocus faecalis [41-43]. 

However, recent studies have highlighted a different family of enzymes as critical regulators 

of this modification, establishing sirtuins as evolutionary-conserved cellular lipoamidases. 

This was first discovered for the mitochondrial sirtuin 4 (SIRT4) in mammals [7], and more 

recently for the sirtuin homologue CobB in Escherichia coli [8] (Fig 1B). Suggesting the 

conservation of this sirtuin function among both Gram positive and negative bacteria, the 

sirtuin SrtN in Bacillus subtilus was also shown as a promising candidate for lipoamidase 

activity [8] (Fig 1B). The sirtuin-mediated process of lipoyl removal inhibits the activities of 

PDH and KDH, indicating this is an ancient mechanism of metabolic regulation [7,8].

Role of Lipoylated Complexes in Disease States

Free lipoamide, known as lipoic acid, has received much attention as an oral supplement 

used to counteract oxidative stress [44,45]. However, perhaps equally important is the role of 

lipoamide as an enzymatic cofactor. Given their importance in cellular metabolism, 

lipoylated mitochondrial enzymes, especially PDH, have been implicated in major human 

diseases. A notable example is the role of PDH in the Warburg Effect, a metabolic profile 

common in cancer cells in which cells derive most of their energy from the glycolytic 

process rather than fully oxidizing carbohydrates into carbon dioxide [46,47]. Not 
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surprisingly, PDH activity in cells displaying the Warburg effect is abnormally low, a 

phenomenon that has been correlated with increased PDK activity [48,49]. The link between 

PDH inhibition and cancer has been further strengthened by the observation that the tumor 

suppressor gene p53 down-regulates PDK transcription [50], and that PDH phosphorylation 

by distinct tyrosine kinases promotes the Warburg effect [51]. The knowledge that both 

phosphorylation and lipoylation regulate PDH function raises questions that remain to be 

answered regarding PTM crosstalk. Characterizing PDH lipoylation status in cancer cells 

will further the understanding of PDH regulation and may provide additional targets for 

cancer therapeutics. Indeed, low SIRT4 expression has been observed in certain forms of 

cancer, already suggesting lipoylation status may act as a disease indicator [12,13].

Seemingly paradoxically, another metabolic characteristic of cancer cells is increased flux 

through the TCA cycle, with glutamine-derived intermediates being channeled into 

biosynthesis of fatty acids and other cellular proliferative materials [52,53]. Some cancers 

have demonstrated increased expression of TCA cycle enzymes, including KDH [54,55], 

although a causative link has not been yet established. Characterizing the levels and roles of 

lipoylation in disease states is expected to help define the underlying mechanisms, as well as 

indicate whether this modification can be leveraged in disease treatment strategies.

Metabolic trends similar to those observed in cancer cells have also been noted in cells 

undergoing viral infection. Human cells infected with the widely-spread herpesvirus human 

cytomegalovirus demonstrate increased flux through glycolysis and an anaplerotic influx of 

carbon into the TCA cycle via the conversion of glutamate to alpha-ketoglutarate [10,56]. 

HIV infection demonstrated increased lipid biosynthesis [57], and lipoic acid was found to 

be an inhibitor of HIV replication [58]. Furthermore, antiviral properties have been observed 

for the sirtuin lipoamidases SIRT4 in mammals and CobB in E. coli [59], perhaps indicating 

that free lipoic acid contributes towards a mechanism of host defense, while lipoylated 

complexes may have pro-viral effects. Taken together, these studies underline the importance 

of lipoamide regulation and its impact on metabolic regulation in disease states.

Detection and Quantification of Lipoylation

As the understanding of the critical contribution of lipoylation in cellular metabolism and 

metabolic disorders has grown, so has the interest in designing methods for detecting the 

protein modification status and quantifying site-specific lipoylation. Traditional molecular 

biology and biochemistry techniques, such as western blotting using antibody against lipoic 

acid, protein purification, nuclear magnetic resonance spectroscopy, crystallography, SDS-

PAGE analysis, and indirect metabolite readings such as NADH production, have all 

provided valuable insight into the function of lipoylated proteins [4,7,8,16,60-67]. More 

recently, mass spectrometry (MS) approaches have provided means to accurately investigate 

the lipoylation status of specific lysine residues in different cell types, tissues, and biological 

contexts [7,8,68] (Fig 2).

Peptides containing lipoyl-lysine residues can be detected by MS as a 188 Dalton mass shift 

(addition of C8H12OS2) relative to unmodified lysines. This method was proven effective for 

measuring lipoamidase activity in vitro after incubation of purified lipoamidases with 
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synthetically lipoylated peptides [7,8] (Fig 2, center). However, when studying lipoylation in 

a more complex biological sample (in cells or in vivo), it is desirable to convert lipoyl-

lysines into a chemical species that cannot undergo further oxidation; this ensures all lipoyl 

groups are in a uniform oxidation state with the same mass for unbiased detection by MS. 

This is achieved by treatment with a reducing agent to generate dihydrolipoamide, after 

which the reduced lipoamide thiols are blocked with N-ethylmaleimide (NEM) [7,8]. This 

treatment results in a 440 Dalton mass shift relative to unmodified lysine, which can be 

detected by single stage MS using peptide mass fingerprinting [68] (Fig 2, left).

The precise sites of lipoyl-lysine can be further investigated using tandem MS (MS/MS) 

[7,8] (Fig 2, left). Analogous to acetylation, lipoylation is considered non-labile upon 

MS/MS fragmentation, being retained on the lysine residue, in contrast to labile 

modifications such as phosphorylation. Acquisition of MS/MS spectra for lipoylated 

peptides also allows the identification of signature fragmentation information that can be 

used to accurately detect and quantify site-specific lipoylation in different biological 

samples. These approaches use targeted MS analyses, such as parallel reaction monitoring 

(PRM), which was shown to be valuable for detecting lipoylated peptides and low 

abundance enzymes, such as SIRT4 [7,8] (Fig 2, left). In these quantitative studies, the 

conversion of lipoyl groups into one chemical species via reduction and alkylation is 

beneficial for facilitating consistent detection by targeted MS. To date, targeted MS has been 

used to detect all lipoyl-lysine containing peptides in PDH and GCV in bacteria, and PDH in 

humans [7,8].

MS-based workflows that integrate immunoaffinity purifications have also been used to 

investigate lipoamidase-substrate interactions or protein associations with lipoylated 

complexes [7,8], providing information about the regulation of lipoylation (Fig 2, right). 

However, several available and powerful MS workflows are yet to be applied to studying 

aspects of protein lipoylation in vitro or in vivo. For example, while PTM enrichment is 

commonly used with MS analysis for studying different modifications, including acetylation 

and phosphorylation [69-71], it remains to be determined whether it can be used to study 

protein lipoylation, perhaps using anti-lipoic acid antibody. This method could provide a 

better understanding of the complete landscape of lipoylated proteins in different organisms. 

Although western blot analyses and searches for lipoylated motif patterns have not provided 

evidence for additional lipoylated proteins in humans, future mass spectrometry analyses can 

help determine whether the few known lipoylated protein complexes are indeed the only 

ones modified.

Given the co-existence of lipoylation- and phosphorylation-driven regulation of metabolic 

complex enzymatic activities, MS methods that allow examining intact proteins or protein 

complexes can also prove valuable when studying the coordinated functions of lipoylation. 

One such method that has gained significant recognition is ion mobility MS, which has been 

elegantly applied to studying intact protein complexes [72], protein structure and 

conformational changes [73,74], and protein-ligand interactions [75]. During recent years, 

this methodology has undergone optimizations for improved mass accuracy and sensitivity 

[76], and has been also applied to studying metabolites [77-79]. These methods can provide 

important insights into how lipoylation may act as both a facilitator of enzymatic reactions 
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and a structural support of protein complexes. For example, the lipoylated PDHX subunit of 

PDH is known to be necessary for the structural integrity and function of the complex 

[64,80]. However, how the addition or removal of lipoylation on PDHX impacts the complex 

structure remains to be fully understood. Another example is provided by LplA, the enzyme 

that adds the lipoyl modification, which was shown to undergo distinct conformational 

changes during the multistep process of lipoylation [66]. Ion mobility MS can help 

determine whether lipoylation-dependent conformations are linked to metabolic disorders 

and related diseases. In addition to ion mobility, cross-linking MS has proven to be valuable 

for gaining insights into the conformations and interactions of protein complexes [81-85]. 

Directly applicable to the study of lipoylation, cross-linking MS methods have been applied 

to (1) uncovering the mitochondrial interactome, where all four lipoylated complexes reside 

[86], and (3) investigating PTM crosstalk mechanisms [87]. The ability to analyze intact 

multimeric protein complexes, like PDH and KDH, and their modification status in 

conjunction with metabolite analyses, has the promise to place the function of lipoylation 

within its metabolic environment in healthy and disease states.

As quantitative MS techniques have now become routine for defining the proteome and 

metabolome landscapes in biologically diverse systems [88-92], such methods offer the 

means to better understand diverse aspects of the regulation of lipoylation. These methods 

include the use of labeling with multiplexed isobaric tags, such as tandem mass tags (TMT) 

and isobaric tags for relative and absolute quantitation (iTRAQ), which have been applied to 

studying temporal proteome and PTM changes associated with disease states, such as cancer 

and viral infection [89,93-95]. Metabolic labeling methods have also been used to uncover 

proteome and metabolome regulation during a biological process. For example, liquid 

chromatography-tandem MS in combination with 13C metabolic labelling has enabled 

quantitative profiling of metabolic flux [56], which is relevant when evaluating the impact of 

lipoylation on metabolic regulation. As MS technologies are constantly being improved, 

coordinated metabolic and proteomic monitoring during a dynamic biological process starts 

to become feasible, and will enable to further understand the function of lipoamide as a 

locus of cellular metabolic control.

Concluding remarks

This is an exciting time in the research area of cellular metabolism regulation, and 

characterizing the function of lipoylation allows access to another important facet. As we 

discuss in this review, advancements have been made in the detection of lipoylation and in 

understanding its enzymatic regulation and functions. Sensitive MS methods are now 

available for identifying and quantifying protein lipoylation events, even when present at low 

abundance. Targeted MS provides the opportunity to accurately track changes in these 

modifications during a biological process. With the recent progress in MS technologies for 

studying intact protein complexes and direct protein interactions, such as ion mobility and 

cross-linking workflows, the impact of lipoylation on protein complex structure and 

associations can be interrogated in greater detail.

The presence of lipoamide regulation at multiple carbon entry points into the TCA cycle, 

such as the incorporation of acetyl-coA and alpha-ketoglutarate, indicates its essential role in 
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maintaining homeostasis and metabolic flexibility. Given the ability of lipoylation to 

modulate multiple central cellular metabolic pathways, as well as the evolutionary 

conservation of lipoylated substrates from bacteria to mammals, it is expected that future 

studies will be informative in diverse fields of research, including cancer research, 

bacteriology, microbiome studies, and virology. These insights can further illuminate 

fundamental aspects of dynamic metabolic response to environmental and nutritional 

conditions, as well as provide opportunities for therapeutic interventions. For example, 

lipoylation provides a so far insufficiently explored tool for examining PDH deficiencies in 

cancer, heart disease, Alzheimer's disease and autism [9,11,96]. We hope that this review 

will provide food for thought and will stimulate future studies in this important growing 

research area.
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• Lipoylation is a rare, but highly conserved lysine posttranslational 

modification

• Lipoylated metabolic complexes are evolutionarily conserved from bacteria to 

humans

• Dysregulation of lipoylated complexes is linked to a wide range of human 

diseases

• The regulation and biological significance of lipoylation is not fully 

understood

• Advances in mass spectrometry-based proteomics provide new avenues of 

investigation
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Figure 1. The evolutionarily conserved metabolic role of lipoylation
(A) Regulation of lipoylation on substrates. Lipoic acid can be added directly by LplA, or in 

a stepwise manner using LipB or LplA, followed by LipA. Delipoylation is mediated by 

lipoamidases (ACP: acyl-carrier protein). (B) Pyruvate dehydrogenase (PDH) and alpha-

ketoglutarate dehydrogenase (KDH) complexes regulate two points of carbon entry into the 

TCA cycle. Inhibition of these two complexes has been demonstrated in humans and 

bacteria by the sirtuin (SIRT)-mediated lipoamidase activity. Font color of each SIRT 

represents the name of the lipoamidase sirtuin for that species (yellow: human, blue: E. coli, 
green: B. subtilis). (C) Lipoylated branched-chain alpha-keto acid dehydrogenase (BCKDH) 

catabolizes branched chain amino acids: leucine, isoleucine, and valine. (D) Glycine is 

degraded via the lipoylated glycine cleavage system (GCV). (E) The location of each lipoyl-

lysine residue is provided for each E2 subunit of the conserved lipoylated protein complexes 

(--- indicates not conserved in E. coli).
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Figure 2. Mass spectrometry-based proteomic workflows that have been applied to studying 
lipoylation
(Left) Common steps for identifying lipoyl peptides across various organisms in vivo or in 

cell culture. Comparison of wild type and enzyme knockout backgrounds allows for the 

relative quantification of lipoylation by targeted MS/MS (NEM: N-ethylmaleimide, L: 

lipoylation, MS: mass spectrometry, m/z: mass to charge ratio). (Center) In vitro analysis of 

lipoamidase activity. Purified sirtuins, SIRT4 and CobB, remove lipoylation from synthetic 

peptides in an NAD+-dependent manner, as measured by MS or targeted MS/MS. (Right) 

Identification of interactions with lipoylated proteins and lipoyl-regulating enzymes. Two 

methods for preparing harvested cell/tissue samples are depicted; low abundance targets 

usually benefit from mitochondrial enrichment prior to affinity purification, while high 

abundance targets can be directly isolated from whole cell lysates. Endogenous or tagged 

proteins of interest and their interaction partners are captured via immunoaffinity 

purification. Subsequent MS and MS/MS analyses provide insight into functional interaction 

networks associated with lipoylated complexes.
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