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Abstract—This paper focuses on the problem of energy imbal-
ance management in a microgrid. The problem is investigated
from the power market perspective. Unlike the traditional power
grid, a microgrid can obtain extra energy from a renewable
energy source (RES) such as a solar panel or a wind turbine.
However, the stochastic input from the RES brings difficulty
in balancing the energy. In this study, a novel pricing scheme
is proposed that provides robustness against the intermittent
power input. The proposed scheme considers possible uncertainty
in the marginal benefit and the marginal cost of the power
market. It uses all available information on the power supply,
power demand, and imbalanced energy. The parameters of the
scheme are evaluated using an H∞ performance index. It turns
out that the parameters can be obtained by solving a linear
matrix inequality problem, which is efficiently solvable due to its
convexity. Simulation examples are given to show its excellent
performance in comparison with existing area control error
pricing schemes.

Index Terms—Energy management, H∞ performance, linear
matrix inequality (LMI), power control, power generation eco-
nomics, power market, power system dynamics, power system
management, smart grids.

I. INTRODUCTION

Price is an important element of market behavior and is

closely related to energy consumption [1], energy management

[2], load control [3], etc. A pricing scheme can be employed

to balance the rate of change of the energy resources [4]. In

a power market, the power demand and supply are associ-

ated with the market price: from the consumers’ perspective,

the demand increases/decreases as the marginal benefit is

higher/lower than the price; from the suppliers’ perspective,

the supply increases/decreases when the marginal cost is

lower/higher than the price. For a functional pricing scheme,

changing the market price can control the energy imbalance.

Many studies have investigated the power market behavior

from a system perspective, i.e., by examining the power market
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dynamics [5]–[8]. In general, the power market dynamics at

least consist of power demand dynamics and power supply

dynamics. When energy storage is considered, the power

market model also included the power storage dynamics [5].

To balance the energy, i.e., to drive the energy storage to

zero, a pricing scheme termed area control error (ACE) pricing

scheme was studied in [6]–[8]. The ACE pricing scheme uses

feedback about the energy imbalance to control the rate of

change of the price. In the terminology of control theory, this

ACE pricing scheme is a dynamic pricing controller.

In this paper, we pay particular attention to the power

market for a microgrid, which is different from the scenarios

considered in the existing studies [5]–[7]. Microgrids, also

termed distributed resource island systems, are defined as “all

intentional island systems that could include local and/or area

electric power systems” [9]. For the purposes of this study,

a microgrid can be any smart facility or unit that efficiently

uses energy to maintain its smart functionality. Meanwhile, it

can acquire extra power input from a local renewable energy

source (RES), e.g., solar panels or wind turbines. In this case,

the overall power supply to the consumer is different from the

case considered in [5] and [6], where the power input comes

only from power suppliers, e.g., power companies.

Although a microgrid can use the energy efficiently, one

significant challenge encountered by employing RESs is the

intermittent (or stochastic, fluctuating) power input to the

grid [10]. This intermittent attribute results from unpredictable

weather conditions. From a perspective of energy manage-

ment, it causes difficulty in balancing the power demand and

the power supply. Traditionally, the ACE pricing scheme [5],

[6] controls the rate of change of the price so that the rate is

proportional to the negative value of the imbalanced energy.

By doing so, the imbalanced energy can be well managed. In

this study, we reveal that its performance can degrade when an

extra intermittent power input is involved. Therefore, a pricing

scheme that is robust against fluctuating power input is needed.

This paper extends the power market model studied in [5]–

[8] to a generalized scenario by including the uncertainty in

the marginal benefit and the marginal cost. This extension

results in a stochastic power system. We propose a novel

pricing scheme for energy imbalance management by using

fuzzy interpolation techniques [11]. To combat the uncertainty

and the fluctuating power effects from the RES, an H∞

performance index is adopted [11], [12]: the proposed pricing

scheme is designed such that the imbalanced energy over all

possible disturbances, i.e., the uncertainty and the fluctuating

effects, is less than a fixed attenuation level. The pricing

parameters can then be obtained by solving a linear matrix

http://arxiv.org/abs/1705.02135v1
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inequality (LMI) [13], which is convex and thus is efficiently

solvable [14].

The main contributions of this paper are as follows. This

study proposes a pricing design from a system perspective that

allows further extension to a more complicated power market

system. In contrast to existing pricing schemes [5], [6], the

proposed scheme is more general and robust as it considers

system disturbances, especially the uncertain and fluctuating

effects of RESs. Based on the proposed methodology, it is

found that the price vibration plays an important role in

balancing the energy excess or energy deficiency. Simulations

show that the proposed scheme outperforms existing ACE

pricing schemes both in the traditional setting and the scenario

studied in this paper.

To avoid confusion, this paper adopts standard notation.

Lowercase letters, such as pg, pd, e and γ, represent scalars;

bold and lowercase letters, such as x,y and b, represent

vectors; bold and capital letters, such as A,K,C and D, are

used to denote matrices. For convenience, In denotes the n×n

identity matrix. AT denotes the transpose of A. For a function

f(t) depending on time t, ḟ(t) denotes the derivative of f(t)

with respect to t, i.e., ḟ(t) = df(t)
dt

. The notation A ≻ 0 is

used to denote a symmetric and positive-definite matrix A,

i.e., AT = A and xTAx > 0 for all x 6= 0. Meanwhile,

B ≺ 0 means that −B ≻ 0. For a symmetric matrix A,

“⋆” is used to denote symmetric terms in A, e.g., [A]ij = ⋆

implies [A]ij = [A]ji, where [A]ij represents the (i, j)-entry

of A.

The rest of this paper is organized as follows. Section

II formulates the power market dynamics and extends the

model in [5] and [6] to include market system disturbances.

The proposed pricing scheme is described in Section III.

Simulation results are presented in Section IV. Finally, Section

V concludes this paper.

II. SYSTEM DYNAMICS OF POWER SUPPLY, POWER

DEMAND, AND ENERGY STORAGE

This section presents the system dynamics of the microgrid

power market, including the dynamics of power demand,

power supply and energy storage. A microgrid needs a certain

amount of power to maintain its smart functionality. The

required power, denoted by pd(t), comes from the connected

RES, denoted by in(t), and a power supplier, denoted by

pg(t). To balance the energy, it is desirable to have the power

demand pd(t) equal to the sum of in(t) and pg(t). In this

structure, the power demand pd(t) relates to the current price

λ(t) and its marginal benefit, and the power supply depends

on the power generation cost, the market price, and feedback

information about the previous excess power. The goal is to

design a pricing scheme λ(t) that can balance the energy. In

other words, we want to stabilize the imbalanced energy e(t),
i.e., to drive the stored energy e(t) to zero.

To study the power market dynamics, Alvarado’s model

[5], [6] is considered. In this paper, this model is extended

to involve the fluctuating power input from the RES, and

the uncertainty in marginal cost and the marginal benefit. We

will briefly discuss Alvarado’s power market model, and the

reader can refer to [5]–[7] for further details. For simplicity,

the case of a single supplier and a single consumer, which

was the focus of [7], is considered. Let pg(t) be the power

supply (or power generation) to the microgrid at time t. The

corresponding marginal cost for supplying pg(t) is denoted

by bg + cgpg(t), where bg and cg represent the initial supplier

cost and the supplier’s demand elasticity, respectively [5]. For

an economic system, the power supply speed ṗg(t) increases

as the price λ(t) exceeds the cost bg + cgpg(t), while it

decreases as the price λ(t) is lower than bg+cgpg(t). Based on

Alvarado’s model, the speed ṗg(t) can be expressed in terms

of the marginal cost and the price as

ṗg(t) =
1

τg
× {λ(t)− (bg + cgpg(t))− ke(t)} (1)

where τg is a scale factor and e(t) represents the stored energy.

The extra term ke(t) with k > 0 is considered as the additional

cost for the excess power supply. It is essential to include ke(t)
in (1) to ensure stability.

As suggested by [5], the dynamic model (1), which is

referred to as the power supply dynamics in this paper, may

involve some uncertain or stochastic attributes. The uncertainty

can be presented by the term bg . In this case, we regarded bg
as a random process by considering

bg = b̂g +∆g(t) (2)

where b̂g represents a known nominal value (average value)

of bg , and ∆g(t) models the uncertainty. The power supply

dynamics can then be rewritten by using (1) and (2) as

ṗg(t) =
−cg

τg
pg(t)−

k

τg
e(t)−

b̂g

τg
+

1

τg
λ(t)−

1

τg
∆g(t). (3)

Let us consider the power demand of the microgrid. The

initial consumer benefit and the consumer’s demand elasticity

are denoted by bd and cd, respectively. Analogously to the

relation between the power supply and the market price, the

demand rate ṗd(t) increases if the marginal benefit bd+cdpd(t)
exceeds the price λ(t), and the rate declines as λ(t) ≥ bd +
cdpd(t). Thus the power demand dynamics can be described

by [5]

ṗd(t) =
1

τd
× {(bd + cdpd(t))− λ(t)} (4)

where τd is a scale factor. To model the stochastic uncertainty

as in (2), bd is replaced by b̂d+∆d(t) and hence, the demand

dynamics (4) can be reformulated as

ṗd(t) =
cd

τd
pd(t) +

b̂d

τd
−

1

τd
λ(t) +

1

τd
∆d(t). (5)

As the RES can produce energy, an extra power input in(t)
is available to the microgrid. In contrast to pg(t), which is a

steady power source that relates to the marginal cost, in(t)
does not contribute to the cost but provides an intermittent

power gain. For the power supply pg(t), the power demand

pd(t) and the power input in(t), the power imbalance ė(t)
(the derivative of the stored energy) can be formulated as

ė(t) = pg(t) + in(t)− pd(t). (6)



3

The goal is to find a pricing scheme λ(t), affecting the

dynamics in (3) and (5), such that the imbalanced energy e(t)
can be driven to zero.

For convenience, we define

x(t) = [pg(t) pd(t) e(t)]
T , b = [−

b̂g

τg

b̂d

τd
0]T ,

w(t) = [∆g(t) ∆d(t) in(t)]
T , τ = [

1

τg

−1

τd
0]T ,

A =




−
cg
τg

0 − k
τg

0 cd
τd

0

1 −1 0


 , and B =




− 1
τg

0 0

0 1
τd

0

0 0 1


 .

Based on (3), (5), (6), and the above notation, the power

market model can be compactly expressed as

ẋ(t) = Ax(t) + b+ τλ(t) +Bw(t). (7)

For the case where w(t) = 0, i.e., no uncertainty and no

power input from the RES, the power model (7) is reduced to

the scenario considered in [4]–[6]. To balance the energy, the

price can be controlled by the differential equation

λ̇(t) =
−e(t)

τλ
(8)

where τλ is a speed constant that has the same role as τg and

τd. The pricing scheme in (8) is referred to as area control error

(ACE) pricing scheme [5], which depends on the feedback of

real time energy imbalance. In the language of control theory,

the ACE pricing scheme is a dynamic pricing controller as it

involves the price dynamics. For the case in which w(t) 6=
0, a robust pricing scheme against the disturbances w(t) is

needed. The next section is dedicated to designing λ(t) for

management of e(t) in the presence of w(t) 6= 0.

Remark 1: In general, deploying price-based controllers,

e.g., the ACE and the proposed pricing schemes, in a real-

world scenario requires using additional knowledge extracted

from the underlying power systems. For instance, if a power

system uses synchronous machines modeled by a 3rd or-

der flux decay model or a 4th order two axis model [15],

knowledge of “average frequency deviation” from the machine

needs to be added into the market dynamics as a substan-

tial measurement of imbalanced energy [16]. However, such

knowledge depends on explicit power system structures and

the corresponding mathematical formulations are beyond the

scope of this paper. We refer the reader to [6] and [16]

for relevant discussions about the interconnection of power

systems and market dynamics. In [6], an automatic voltage

regulator model interconnected with market dynamics was

examined. In [16], such interconnection was further studied

by using the New England 39 bus test system, including

generator/turbine/governor dynamics.

III. PROPOSED ROBUST PRICING SCHEME

In this section, a fuzzy system is proposed to replace the

power market defined in (7) so that a robust pricing scheme

can be constructed based on it. We will consider an H∞ design

for the proposed scheme due to its robustness against system

disturbances, such as the uncertainty ∆g(t) and ∆d(t), and

the fluctuating power input in(t) that is contained in w(t).
Unlike the ACE pricing scheme (8) which employs only the

information of e(t), the proposed pricing scheme utilizes the

feedback of power supply pg(t), power demand pd(t), and

imbalance energy e(t).
To facilitate the design, our strategy is to interpolate

Ax(t) + b in different operating regions by several linear

systems of the form Amx(t). That is, referring to (7), the

system

y(t) = Ax(t) + b (9)

is represented by [17], [18]

Rule m

If pg(t) is Fm1, pd(t) is Fm2, and e(t) is Fm3

Then y(t) = Amx(t)

(10)

for m = 1, 2, ...,M , where M represents the number of

fuzzy rules. The premises in the fuzzy system (10) are the

states pg(t), pd(t), and e(t). Fm1, Fm2, and Fm3 are fuzzy

membership functions. According to (10), system (9) can be

represented by a fuzzy system as

y(t) =

M∑

m=1

hm(x(t))Amx(t) + ∆x (11)

where

hm(x(t)) =
Fm1(pg(t))Fm2(pd(t))Fm3(e(t))∑M

m′=1 Fm′1(pg(t))Fm′2(pd(t))Fm′3(e(t))
.

(12)

The term

∆x = (Ax(t) + b)−

M∑

m=1

hm(x(t))Amx(t)

denotes the approximation error, which can be very small if

sufficient fuzzy rules are used. The approximation error ∆x

is omitted in the ensuing derivation by assuming that a large

value of M is employed. Each Fmn can be interpreted as the

set to which a certain premise belongs with degree Fmn(·).
Therefore, Fmn(·) is always non-negative and, according to

(12), we have hm(x(t)) ≥ 0 with
∑M

m=1 hm(x(t)) = 1. For

example, pg(t) belongs to Fm1 with the degree Fm1(pg(t)).
In our simulations, we will show the construction of Fmn.

Once the membership functions Fmn are assigned, the matri-

ces Am,m = 1, 2, ...,M can be evaluated by least-squares

methods. At this point, we assume that Fmn and Am are

available for further manipulation.

Similarly to the fuzzy system (10), the proposed pricing

scheme is also constructed by fuzzy rules as

Rule m

If pg(t) is Fm1, pd(t) is Fm2, and e(t) is Fm3

Then λ(t) = Kmx(t)

(13)

for m = 1, 2, ...,M , where Km represents the control gain

to be designed. According to (13), the overall pricing scheme

can be obtained as

λ(t) =

M∑

m=1

hm(x(t))Kmx(t) (14)
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where the fuzzy basis hm(x(t)) is defined in (12). The same

premises and membership functions as in (10) are adopted in

(13) for further integration. In contrast to the ACE pricing

scheme (8), the proposed scheme (14) is a static pricing

controller as it does not involve the price dynamics [13].

Based on (9), (11), and (14), the power market system in

(7) can be equivalently expressed as

ẋ(t) = y(t) + τλ(t) +Bw(t)

=

M∑

m=1

hm(x(t))(Am + τKm)x(t) +Bw(t)

:=

M∑

m=1

hm(x(t))Ãmx(t) +Bw(t)

(15)

where Ãm = Am + τKm. The aim of the pricing scheme

design is to drive e(t) as close to zero as possible. This can

be done by choosing an appropriate system output z(t) and

control gains Km such that the H∞ performance criterion

[13] ∫ ∞

0

z(t)T z(t) − γ2w(t)Tw(t)dt < 0 (16)

is satisfied. The physical meaning of (16) is described as

follows: the energy of z(t) is controlled against the energy

of disturbance w(t) so that a prescribed H∞ attenuation level

γ > 0 is guaranteed. For a better understanding, let us suppose

that w(t) 6= 0 and z(t),w(t) ∈ L2[0 ∞), i.e.,
∫ ∞

0

z(t)T z(t)dt < ∞,

∫ ∞

0

w(t)Tw(t)dt < ∞. (17)

The condition (16) is then equivalent to

sup
w(t) 6=0

√∫∞

0 z(t)T z(t)dt
√∫∞

0 w(t)Tw(t)dt
< γ (18)

which explains why γ is regarded as an attenuation level.

If we choose

z(t) =

[
e(t)
ελ(t)

]
(19)

for a small ε > 0, then (18) can be interpreted as follows:

the imbalanced energy e(t) against the disturbances w(t) is

mainly controlled such that the attenuation ratio is less than the

prescribed level γ. The price λ(t) pre-multiplied by ε as shown

in (19) is also involved in the output z(t) because a large price

perturbation can be undesirable in practice. By setting a small

value of ε, the imbalanced energy e(t) can be controlled by

an appropriate price perturbation. For simplicity, we define

C =

[
0 0 1
0 0 0

]
and D =

[
0
ε

]
. (20)

According to (14) and (20), the system output z(t) in (19) can

then be expressed as

z(t) = Cx(t) +Dλ(t)

=

M∑

m=1

hm(x(t))[C +DKm]x(t)

:=

M∑

m=1

hm(x(t))C̃mx(t)

(21)

where C̃m = C +DKm.

To guarantee the condition in (16), let us consider the

quadratic Lyapunov function [19]

V (x) = x(t)TPx(t) (22)

for some positive matrix P ≻ 0 to be determined. The H∞

performance criterion (16) is satisfied if

V̇ (x) + z(t)T z(t)− γ2w(t)Tw(t) < 0 (23)

holds true [13]. Note that V̇ (x) = 2ẋ(t)TPx(t). By substi-

tuting (15) and (21) into the left-hand side of (23), we have

V̇ (x) + z(t)T z(t)− γ2w(t)Tw(t)

≤ 2[

M∑

m=1

hm(x(t))Ãmx(t) +Bw(t)]TPx(t)

+

M∑

m=1

hm(x(t))x(t)T C̃T
mC̃mx(t)−w(t)T (γ2I3)w(t)

=

M∑

m=1

hm(x(t))

[
x(t)
w(t)

]T { [
ÃT

mP + PÃm PB

⋆ −γ2I3

]

+

[
C̃T

m

0

]
I−1
2

[
C̃m 0

] }[
x(t)
w(t)

]

:=

M∑

m=1

hm(x(t))

[
x(t)
w(t)

]T
Φ

[
x(t)
w(t)

]
.

(24)

The inequality comes from the fact that (Lemma 2 [11])

M∑

m=1

hm(x(t))x(t)T C̃T
m

M∑

m′=1

hm′(x(t))C̃m′x(t)

≤

M∑

m=1

hm(x(t))x(t)T C̃T
mC̃mx(t).

In (24), the mark “⋆” denotes symmetric terms of a symmetric

matrix. i.e., (PB)T in this case.

Based on (24), a sufficient condition for the validity of (23)

is Φ ≺ 0, which is equivalent to (Schur complement [13],

[14]) 


ÃT
mP + PÃm PB C̃T

m

⋆ −γ2I3 0

⋆ ⋆ −I2


 ≺ 0 (25)

for m = 1, 2, ...,M . After pre-multiplying and post-

multiplying (25) by diag(P−1, I3, I2), we have



QÃT
m + ÃmQ B QC̃T

m

⋆ −γ2I3 0

⋆ ⋆ −I2


 ≺ 0, ∀m (26)

where

Q = P−1 ≻ 0. (27)

In (26), Km is contained in Ãm and C̃m. As Q and Km

are variables and coupled, the matrix inequality (26) is not

linear. It is essential to have an LMI since such is convex and

hence, can be efficiently solved. To obtain a feasible solution

of (26), let us define

Ym = KmQ. (28)
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By substituting (28) into the terms QÃT
m + ÃmQ and QC̃T

m

in (26), we have




AmQ+ τYm + (⋆) B QCT + Y T
mDT

⋆ −γ2I3 0

⋆ ⋆ −I2


 ≺ 0

for all m, and Q ≻ 0
(29)

where (⋆) represents (AmQ+ τYm)T . The matrix inequality

(29) is an LMI in Q ≻ 0 and Ym. Referring to (28), the

control gains Km can be obtained by Km = YmQ−1 such

that the H∞ performance in (16) holds true.

We summarize the proposed pricing scheme as follows. For

the market power system in (7), a robust pricing scheme is

proposed in the form of (14), where the control gains Km

are evaluated by solving (29). The LMI (29) can be solved

by successively lowering the value of γ until (29) becomes

infeasible. The smallest γ > 0 that guarantees the feasibility

of (29) can be used and the corresponding Q and Ym can be

obtained to further evaluate Km [13], [14]. In our simulations,

the proposed scheme is compared to the ACE pricing scheme

presented by the differential equation in (8).

Remark 2: A microgrid often possesses storage capabili-

ties and requires the stored energy e(t) to be maintained at a

certain energy level to facilitate both ordinary and emergency

power use [20]. For a microgrid with an energy storage system,

it becomes more reasonable to consider e(t) → q > 0, where q

represents the desired energy level. This aspect can be included

in our proposed scheme by using a change of variables, i.e.,

ẽ(t) = e(t)−q, as shown in the following. In (1), the feedback

term ke(t) is replaced by kẽ(t) because the additional cost is

now introduced by not achieving the desired energy level q,

i.e., ẽ(t) 6= 0. Since ẽ(t) is different from e(t) by a constant

term, they have the same dynamics ˙̃e(t) = ė(t) as expressed in

(6). For the premise variable in the fuzzy rules, the augmented

state x(t) in (14) and the system output z(t) in (19), ẽ(t)
replaces the role of e(t). It can be found that the change of

variables results in the same LMI constraint in (29), while the

only difference is the interpretation of “imbalanced energy”.

In such a configuration, the energy is imbalanced if the stored

energy e(t) is not maintained at a desired working level q or,

equivalently, ẽ(t) 6= 0.

Remark 3: When a network of microgrids is equipped

with an energy management system (EMS), our proposed

scheme turns into a centralized design after suitable mod-

ification. For this centralized configuration, each microgrid

may be connected to another microgrid so that energy state

information of microgrids is collected and used to achieve

certain network performance objectives [21]. In this case, the

EMS functions from a whole networked system perspective.

However, the network size should be reasonable for efficient

energy management, and the proposed pricing scheme needs

further modification to include the interactive relation between

microgrids. In contrast, the proposed pricing scheme is readily

applicable to a decentralized configuration when a microgrid

is only connected to the conventional power grid and the EMS

operates within the scope of a microgrid.

TABLE I
POWER MARKET PARAMETERS

cg 0.4 cd 0.5
τg 0.2 τd 0.25

b̂g 2 b̂d 10
τλ 100 k 0.1
λ(0) 4.66 e(0) 0
pg(0) 10.4 pd(0) 13

Remark 4: There exist forecasting techniques [22], [23]

that are able to provide good predictions of the power input

in(t) given by RESs. When these prediction techniques are

employed by the proposed scheme, in(t) can be modeled

as in(t) = în + ∆in(t), where în and ∆in(t) represent

the predicted average power input and the prediction error,

respectively. The column vectors b and w(t) in (7) should be

modified as

b =
[
−

b̂g
τg

b̂d
τd

în

]T
and w(t) = [∆g(t) ∆d(t) ∆in(t)]

T

respectively. The knowledge on în is then updated over time.

When în is updated, Am,m = 1, 2, ...,M and thus Km,m =
1, 2, ...,M need to be re-evaluated as well.

IV. NUMERICAL EXAMPLES

In this section, we describe simulations of the power market

behavior according to its dynamics in (7). TABLE I lists

the numerical values of the system parameters used in these

simulations. Two numerical examples are considered. The

first example considers the market behavior without system

uncertainty and power input from the RES, i.e., w(t) = 0.

The second example extends to the case where w(t) 6= 0, i.e.,

the power market behavior for a microgrid is investigated.

For the proposed pricing scheme in (14), the fuzzy mem-

bership functions Fmn in (10) and (13) were constructed

according to Fig. 1. The input ranges [5, 25], [5, 25] and

[−10, 10] were considered for the premises pg(t), pd(t) and

e(t), respectively. As the range of each premise pg(t), pd(t)
or e(t) in fuzzy rules is covered by four membership func-

tions, denoted by Fmn = 0, Fmn = 1, Fmn = 2 and

Fmn = 3, there are M = 43 = 64 fuzzy rules. For instance,

(Fm1, Fm2, Fm3) = (0, 2, 3) is one of the 64 fuzzy rules.

These fuzzy membership functions in Fig. 1 were adopted

because of their simplicity. Another popular choice of Fmn

is a bell-shaped function [18]. For more sophisticated fuzzy

schemes that use fewer fuzzy rules, the reader can refer to

[11], [17], [18] and the references therein.

Take the input premises (pg(t), pd(t), e(t)) =
(11.67, 8.335,−1) and the fuzzy rule (Fm1, Fm2, Fm3) =
(1, 0, 3) as an example. Referring to Fig. 1 with

(Fm1, Fm2, Fm3) = (1, 0, 3) , we have

Fm1(pg(t)) = max{min{
1

11.67 − 5
(pg(t)− 5),

1

18.33 − 11.67
(18.33− pg(t))}, 0}

Fm2(pd(t)) = max{min{
1

11.67 − 5
(11.67− pd(t)), 1}, 0}

Fm3(e(t)) = max{min{
1

10− 3.33
(e(t)− 3.33), 1}, 0}
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1

( )gp t

1 0mF =
1 1mF = 1 2mF = 1 3mF =

1( ( ))m gF p t

5 11.67 18.33 25

1

( )dp t

2 0mF = 2 1mF = 2 2mF = 2 3mF =

2 ( ( ))m dF p t

5 11.67 18.33 25

1

( )e t

3 0mF = 3 1mF = 3 2mF = 3 3mF =

3( ( ))mF e t

10− 3.33− 3.33 10

Fig. 1. Four fuzzy membership functions denoted by Fmn = 0, Fmn =
1, Fmn = 2 and Fmn = 3. The set [5, 25]× [5, 25]× [−10, 10] is the input
space for the fuzzy systems (10) and (13). Each input range is uniformly
partitioned by fuzzy membership functions.

implying that Fm1(11.67) = 1, Fm2(8.335) = 0.5 and

Fm3(−1) = 0. This can be interpreted as follow. The premises

pg(t), pd(t) and e(t) belong to the fuzzy membership functions

Fm1 = 1, Fm2 = 0 and Fm3 = 3 with the degrees 1, 0.5 and

0, respectively. The term “belong to” is used because a fuzzy

membership function is often referred to as a fuzzy set. In

this case, hm([11.67 8.335 − 1]T ) represents the degree of

fulfillment of the mth fuzzy rule, where hm is defined in (12).

Once the fuzzy rules have been constructed, i.e., fuzzy

membership functions are assigned to each rule, the matrices

Am in (10) can be obtained as follows: first, a sequence

of input vectors xℓ, ℓ = 1, 2, ..., L, are randomly generated

from the input space [5, 25] × [5, 25] × [−10, 10]. The num-

ber L = 1500 was chosen. A sequence of output vectors

yℓ, ℓ = 1, 2, ..., L, can be obtained by inputting xℓ into (9).

By substituting xℓ and yℓ into (11), we have 3L equations

with Am,m = 1, 2, ...,M, as variables to be solved. The

matrices Am can be estimated by using least-squares methods.

For M = 64 fuzzy rules, the approximation error ∆x in (11)

is relatively small with respect to the input energy, i.e.,

sup
xℓ 6=0,ℓ=1,2,...,L

∆T
xℓ
∆xℓ

xT
ℓ xℓ

= 0.0193.

To obtain the gain matrices Km in the proposed pricing

scheme, Am for m = 1, 2, ...,M were substituted into (29).

For prescribed values of γ2 = 2 in (29) and ε = 0.1 in (20),

(29) is an LMI in Q and Ym. As an LMI problem is a convex

problem, (29) with Q ≻ 0 can be efficiently solved using

existing algorithms such as interior-point methods [13], [14].

A. Example 1: w(t) = 0

For the first simulation example, the case where w(t) = 0
was considered, i.e., no uncertainty in the marginal cost (b̂g =
bg) and the marginal benefit (b̂d = bd), and no power input

from the RES (in(t) = 0). This is the scenario for which the

ACE pricing scheme (8) was designed [5]. We have compared

the proposed pricing scheme (14) to the ACE pricing scheme.

The initial conditions λ(0), e(0), pg(0) and pd(0) were listed

in TABLE I (λ(0) is needed in the ACE pricing scheme). The

system behavior was observed from time t = 0 to t = 50.

(pg, pd, e, λ) = (8.89, 8.89, 0, 5.56) is the equilibrium point

of the augmented system (7) and (8) with w(t) = 0.

In this example, the energy is balanced if pg(t) and pd(t)
converge to the same value. See Figs. 2(a) and (b) for the

resulting performance. Although both pricing schemes can

stabilize the power market system, the proposed approach

reaches the steady state more quickly than the ACE pricing

scheme, the imbalanced energy e(t) in particular. As shown

in Fig. 2(b), the superior energy imbalance management of

the proposed scheme results from vibrating the price so that

e(t) could converge to zero rapidly. In contrast, the ACE

scheme has less price vibration and a slower convergence rate

of the energy imbalance as shown in Fig. 2(a). It is interesting

to notice that although the proposed pricing mechanism is

different from the ACE pricing scheme, it still converges to

the equilibrium point (pg, pd, e, λ) = (8.89, 8.89, 0, 5.56) of

ACE pricing.

B. Example 2: w(t) 6= 0

For the second example, let us consider a power market

system for a microgrid, i.e., w(t) 6= 0. The extra power from

the RES, and the natural uncertainty in marginal cost and

benefit [5] were involved as the overall system disturbances. In

this case, the overall disturbances w(t) in (7) were simulated

by

w(t) = [ rand[−0.5,0.5](t) rand[−0.4,0.6](t) rand[0,2](t) ]T

(30)

where rand[q1,q2](t) represents a random process that is

uniformly distributed over the range [q1, q2]. As the values

in(t) can assume are always positive, in(t) = rand[0,2](t) in

(30) was employed to model the input power energy to the

microgrid.
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Fig. 2. Traditional power market in Example 1 with w(t) = 0: (a) The ACE pricing in (8); (b) The proposed robust pricing scheme in (14).
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Fig. 3. Power market for a microgrid in Example 2 with w(t) defined by (30): (a) The ACE pricing in (8); (b) The proposed robust pricing scheme in (14).

In this example, the power supply pg(t) must be less than

the power demand pd(t) in order to avoid energy imbalance

because the extra power input in(t) > 0 exists. To obtain a

clear view of system trajectories, the power market behavior

was examined from time t = 0 to t = 150. Figs. 3(a) and (b)

show that the proposed pricing scheme outperforms the ACE

scheme through superior energy imbalance management. As

expected, we see that pg(t) < pd(t) in the proposed scheme

according to Fig. 3(b). The price vibration is used to robustly

stabilize e(t) against the fluctuating power input in(t) and the

system uncertainty. In contrast, the ACE pricing scheme in Fig.

3(a) involves little price vibration but results in severe vibra-

tion of e(t). In this example, the four states pg(t), pd(t), e(t)

and λ(t) of both pricing schemes fluctuate around the same

equilibrium (pg, pd, e, λ) = (8.89, 8.89, 0, 5.56).

Remark 5: Suppose that the scenarios covered by Remarks

2 and 3 are considered in our scheme. The generated power

pg(t) is then consumed by N microgrids with N > 1.

Let pdn
(t) denote the power demand of microgrid n. The

corresponding stored energy en(t) is required to approach a

certain energy level qn > 0 for n = 1, 2, ..., N . Referring to

Figs. 2 and 3, pg(t) is mostly less than or equal to pd(t), and

e(t) vibrates around zero in our simulations. In contrast, when

the scenarios are considered, pg(t) should become larger than

pdn
(t) provided that the RESs only offer a small amount of

power inputs to the microgrids. The relation pg(t) > pdn
(t)
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results from the existence of multiple microgrids such that

N microgrids need to share the generated power pg(t). The

difference pg(t)− pdn
(t) can be enlarged upon increasing N .

In this case, en(t) should vibrate around qn > 0 instead of

zero.

From the previous two examples, it was found that price

vibration was a crucial factor for energy imbalance manage-

ment. In the first example, the vibration in the proposed pricing

scheme occurred only at the beginning and was alleviated over

the remaining time. The initial vibration was used to deal with

the imbalanced initial conditions. In the second example, the

price vibrated continuously due to the existing disturbances,

i.e., the fluctuating power input and the uncertainty in marginal

cost/benefit. By comparing two different pricing schemes, we

can summarize that the proposed pricing scheme is more

robust against disturbances than the ACE scheme. This is

mainly because the proposed pricing scheme fully utilizes

all states, i.e, pg(t), pd(t) and e(t), while the ACE scheme

employs only the feedback of e(t). From the performance of

the proposed methodology, we conclude that, by adjusting the

market price appropriately, it is possible to robustly balance

the energy against uncertainty in marginal cost/benefit and the

fluctuating power input from the RES.

V. CONCLUSION

This paper has considered power market behavior in a

microgrid, which is different from the traditional power market

model. The market dynamics studied can be regarded as a

generalization of the traditional market dynamics. A novel

pricing scheme for the energy management in a microgrid has

been proposed. The underlying idea is to use fuzzy systems

together with an LMI approach to assure the robustness of

market dynamics.

In the language of control theory, the proposed pricing

scheme is a static pricing controller, while the existing ACE

scheme is a dynamic pricing controller as it employs the

price dynamics for energy imbalance management. We do not

conclude that a static pricing scheme is better than a dynamic

pricing scheme. In fact, dynamic pricing is of course a

generalization of static pricing. We have intended to show that,

by using fuzzy interpolation techniques, all market information

is able to be easily integrated such that the pricing design

can be transformed into an LMI problem, which is efficiently

solvable due to its convexity. Unlike the ACE pricing scheme

which only employs feedback of the imbalanced energy, the

proposed pricing scheme results in better performance due to

its full utilization of all system states, i.e., power supply, power

demand, and imbalanced power.

As illustrated by simulations, the proposed design out-

performs the existing ACE pricing scheme in the following

two ways: it manages the imbalanced energy more quickly;

and it is more robust against system disturbances, i.e., the

uncertainty in marginal benefit and cost, and the fluctuating

power input from the RES. Despite the differences, the price in

the proposed scheme still tends to the same equilibrium as the

ACE pricing scheme. The proposed pricing scheme maintains

its performance on the imbalanced energy by vibrating the

price. Therefore, price vibration is crucial to balancing the

power demand and power supply.

Referring to Remark 1, some existing studies worked on

interconnected systems comprising power systems and market

dynamics, in which the results were established based on

some specific models. Our planned future work includes

designing a practical strategy to deploy the proposed pricing

scheme in certain real-world scenarios comprising regulators

and traditional utilities. In addition, it is also of interest to

consider a centralized scheme for a network of microgrids so

that energy resources can be fully utilized from a networked

system perspective, as discussed in Remark 3.
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