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Abstract

Influenza virus tissue tropism defines the host cells and tissues that support viral replication and contributes to determining
which regions of the respiratory tract are infected in humans. The location of influenza virus infection along the respiratory
tract is a key determinant of virus pathogenicity and transmissibility, which are at the basis of influenza burdens in the
human population. As the pathogenicity and transmissibility of influenza virus ultimately determine its reproductive fitness
at the population level, strong selective pressures will shape influenza virus tissue tropisms that maximize fitness. At
present, the relationships between influenza virus tissue tropism within hosts and reproductive fitness at the population
level are poorly understood. The selective pressures and constraints that shape tissue tropism and thereby influence the
location of influenza virus infection along the respiratory tract are not well characterized. We use mathematical models that
link within-host infection dynamics in a spatially-structured human respiratory tract to between-host transmission dynamics,
with the aim of characterizing the possible selective pressures on influenza virus tissue tropism. The results indicate that
spatial heterogeneities in virus clearance, virus pathogenicity or both, resulting from the unique structure of the respiratory
tract, may drive optimal receptor binding affinity–that maximizes influenza virus reproductive fitness at the population
level–towards sialic acids with a2,6 linkage to galactose. The expanding cell pool deeper down the respiratory tract, in
association with lower clearance rates, may result in optimal infectivity rates–that likewise maximize influenza virus
reproductive fitness at the population level–to exhibit a decreasing trend towards deeper regions of the respiratory tract.
Lastly, pre-existing immunity may drive influenza virus tissue tropism towards upper regions of the respiratory tract. The
proposed framework provides a new template for the cross-scale study of influenza virus evolutionary and epidemiological
dynamics in humans.
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Introduction

Seasonal influenza A annually causes up to a billion cases

and up to half-a-million deaths worldwide, leading to consid-

erable economic losses [1]. Influenza burdens can be increased

greatly during pandemics, which are triggered by the intro-

duction of novel influenza A viruses, typically from animal

reservoirs, into the human population. Although rare events,

past pandemics have each resulted in up to 50 million deaths

worldwide [2].

Influenza burdens are a result of disease severity in individual

hosts and the size of epidemic or pandemic waves at the

population level. Influenza virus tissue tropism defines host cells

and tissues that support viral replication, and governs at least

partly which regions of the respiratory tract are infected in

humans. The location of infection along the human respiratory

tract is an essential determinant of virus pathogenicity and

transmissibility [3–5], which are at the basis of influenza burdens.

Pathogenicity typically increases as infection is located deeper

down the respiratory tract because of the delicate nature and vital

function of deeper airways and alveoli [3]. Conversely, transmis-

sibility appears favoured with infection located higher up [4–9].

Avian influenza viruses that predominantly infect deeper regions

of the respiratory tract (DRRT, i.e., bronchioles and alveoli) do

not efficiently transmit among humans. Furthermore, genetic

mutations in influenza virus genome that result in reduced tropism

for upper regions of the respiratory tract (URRT, i.e., nose,

trachea and bronchi) impair or abolish virus transmissibility in
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animal models [9–12], while genetic mutations that enhance

URRT tropism can restore transmissibility [10,12,13].

Pathogenicity and transmissibility primarily determine influenza

virus population-level fitness, usually measured by the basic

reproductive number, R0, and defined by the number of

secondary cases arising from one infected individual in a

susceptible population. Mathematically, R0 is defined by the

product of transmission rate and infectious period, both of which

are dependent on pathogenicity and transmissibility (i.e., the

intrinsic ability of the virus to be transmitted from one individual

to another) [14]. Consequently, tissue tropism–which contributes

to determining pathogenicity and transmissibility–will be under

strong selective pressure to maximize fitness. In other words, there

may be an optimal location for influenza virus infection along the

respiratory tract that maximizes R0 [15]. However, the relation-

ships between influenza virus tissue tropism in individual hosts and

reproductive fitness at the population level are currently poorly

understood, hence the selective pressures on influenza virus tissue

tropism are not well characterized.

In this paper, we use cross-scale mathematical models of

infection dynamics linking influenza virus within-host dynamics in

a spatially-structured respiratory tract to population-level dynam-

ics of transmission in a homogeneous and well-mixed population,

to unveil the possible selective pressures on influenza virus tissue

tropism. The proposed framework builds on recent developments

in the cross-scale modeling of virus infection dynamics, whereby

parameters of between-host models are estimated based on the

dynamics of infection in individual hosts, as captured by within-

host models [15–17]. These cross-scale or nested models have shed

light on the evolutionary dynamics of immune escape and

virulence by linking within-host and population-level scales;

dynamics that could not be revealed by models addressing either

of these scales separately. We propose to use a similar approach to

explore the evolutionary dynamics of influenza virus tissue

tropism. Because tissue tropism specifically refers to spatially-

explicit dynamics within individual hosts, we introduce spatially-

structured within-host models into the framework. Spatially-

structured within-host models have proved useful tools for the

study of within-host infection dynamics of human immunodefi-

cient virus and hepatitis C virus in the presence of target cell

heterogeneities [18,19]. They shed light on the mechanisms

behind multiple phases of infection or different courses of disease

progression. Here we show that spatially-structured within-host

models nested into between-host models of infection dynamics can

provide insights into possible selective pressures shaping influenza

virus tissue tropism, and highlight the reciprocal relationships

between influenza virus tissue tropism within hosts and reproduc-

tive fitness at the population level.

Materials and Methods

Conceptual Overview
Within-host models of infection dynamics in a spatially-

structured respiratory tract composed of linearly-connected

respiratory compartments were developed. These allowed to

quantitatively assess overall viral excretion (X) and pathogenicity

(P) of viruses with different cellular tropisms. The quantitative

measures of viral excretion (X) and pathogenicity (P) were then

used to estimate the population-level reproductive number (R) of

the viruses when circulating in a homogeneous and well-mixed

human population (Fig. 1). Optimal tissue tropisms were defined

as the cellular tropisms that maximized the virus reproductive

number.

Mathematical Model of Within-host Infection Dynamics
We developed a set of coupled differential equation models to

capture the dynamics of influenza virus infection and host immune

responses in the respiratory tract of individual hosts. Host adaptive

immune responses were modeled in order to allow re-infection of

hosts with pre-existing immunity. The minimal general format of

the models was based on previously published work [16,17,20–22],

modified as follows:

Susceptible cells

dS=dt~{bSV{cSF

Infected cells

dI=dt~bSV{aI{etIT

Cells refractory to infection

dR=dt~cSF

Free infective virus

dV=dt~vpI{mvV{eaAV{egGV{xV

Type I interferon

dF=dt~prf I{mf F

Cytotoxic T cells

dT=dt~prtIDtt{mtT{etIT

IgA

dA=dt~praVDta{maA{eaAV

IgG

dG=dt~prgVDtg{mgG{egGV ð1Þ

Susceptible cells (S) become infected with virus (V) at an

infectivity rate (b) or become refractory to infection due to the

action of type I interferon (F) at a rate c. A refractory state to

infection, triggered by host innate immune responses (type I

interferon), was included to avoid cell depletion [20]. Infected cells

(I) are killed by the infection at a rate a and by cytotoxic T cells (T)

at a rate et. They produce virus (V) at a rate vp. Virus (V) decays at

a rate mv, and is neutralized by immunoglobulins of type A (IgA; A)

at a rate ea and by immunoglobulins of type G (IgG; G) at a rate

eg, or is cleared by the muco-ciliary escalator at a rate x. Type I

interferon (F) is produced proportionally to the number of infected

cells (I) at a rate prf and decays at a rate mf. Cytotoxic T cells (T)

proliferate proportionally to the number of infected cells (I) at a

Tissue Tropism and Fitness of Influenza Virus
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rate prt, with a delay of Dtt, and die at a rate mt. IgA (A) and IgG

(G) are produced proportionally to the number of free virus (V) at

a rate pra and prg, with a delay of Dta and Dtg, and decay at a rate

ma and mg, respectively. IgA and IgG levels one year following

primary infection are used as pre-existing immunity levels to

model re-infection dynamics.

More complex versions of the models included the following

variations. Birth and natural death processes of respiratory

epithelial cells were added. The birth rate of respiratory epithelial

cells was set based on the initial appearance of epithelial

hyperplasia following infection, which typically appears along

the respiratory tract around 3 days post-infection, irrespective of

the region involved [3,23]. The death rates of respiratory epithelial

cells along the airways and of pneumocytes in the alveoli were set

based on their respective lifespan of 6 and 18 months [24]. The

immune system was further modeled with variable complexity, to

include in most complex versions, the coupled dynamics of

antigen-presenting cells, natural killer (NK) cells, T-helper cells,

plasma B cells, and cytotoxic T lymphocytes, based on previous

models [21,25]. Lastly, the intermediary state of exposed cells,

characterizing infected-non-infectious cells, was added in both

simple and complex versions of the model to obtain SEI-type

models [20].

Spatially-structured respiratory tract. The tracheo-bron-

chial tree is composed of the trachea and successive generations of

bifurcating bronchi and bronchioles of decreasing length and

diameter, through which air is transported. Terminal and

respiratory bronchioles feed into alveolar ducts and inter-

connected alveoli forming pulmonary acini, where vital gas

exchange takes place. The bifurcating structure of the respiratory

tract allows for a rapidly expanding epithelial surface area (and

thus cell pool) towards the deeper lungs [26] (Table 1). Different

cell types line different parts of the respiratory tract [26–28]. The

tracheal and bronchial epithelium contains predominantly ciliated

cells, as well as mucus-producing goblet cells. Together, these cells

form the muco-ciliary escalator, which traps and propels particles

towards the pharynx [29]. In contrast, the bronchiolar epithelium

contains predominantly non-ciliated cells. The alveolar epithelium

is composed of flat type I pneumocytes, forming the thin barrier

between air and blood, and more numerous cuboidal type II

pneumocytes, secreting surfactant and reabsorbing fluids [3].

Heterogeneities in the abundance, distribution and function of

respiratory epithelial cells have a major impact on different

properties of the respiratory tract (Table 1). First, because of the

muco-ciliary escalator, particles depositing in the trachea and

bronchi have a higher probability of being cleared towards the

pharyngeal area than those depositing in the bronchioles and

alveoli [29–33]. Second, because of the more delicate nature and

vital function of deeper airways and alveoli, damage caused to the

bronchiolar and alveolar epithelia has more severe consequences

than damage to the tracheal and bronchial epithelia [3]. Third,

different types of cellular receptors used by influenza virus are

expressed on the surface of the different respiratory epithelial cells.

Ciliated epithelial cells and type I pneumocytes predominantly

harbor sialic acids with a2,6 linkage to galactose, which are the

cellular receptors preferentially used by human influenza A

viruses. In contrast, non-ciliated epithelial cells and type II

pneumocytes predominantly harbor sialic acids with a2,3 linkage

to galactose, which are the receptors preferentially used by avian

influenza viruses [5–7,34]. The cellular tropism of avian influenza

viruses and the spatial distribution of their target cells, more

abundantly present in DRRT in humans, explain at least partly

their higher pathogenicity compared to that of human influenza

viruses [5–7].

Lastly, the dynamics and nature of host immune responses

markedly differ along the respiratory tract (Table 1). Following

infection, specific neutralizing immunoglobulins of type A and G

(IgA and IgG, respectively) are differently distributed along the

respiratory epithelium, limiting re-infection of underlying cells

[35–37]. IgA are actively secreted along the epithelium of the

airways, with higher concentrations in URRT. They are short-

lived and undetectable generally 1 to 3 months following infection.

In contrast, IgG passively diffuse from the serum and mostly line

the respiratory epithelium of DRRT. They are long-lived and can

be detected in circulation several years after infection. Although

cellular adaptive immune responses, including cytotoxic T-cell

responses, have not been quantified in similar detail in different

regions of the respiratory tract, they also appear stronger and

Figure 1. Conceptual overview of the framework. Within-host models of infection dynamics in a spatially-structured respiratory tract
composed of three linearly-connected compartments are used to estimate overall virus excretion (X) and pathogenicity (P). The parameters that differ
per respiratory compartment (i) are the initial number of susceptible cells (S0,i), the viral clearance rate (xi), and the distribution coefficients of
immunoglobulins of type A (IgA) and IgG (cai and cgi, respectively). The measures of virus excretion (X) and pathogenicity (P) in turn are used to
estimate population-level transmission rate (bh), mortality rate (ah), and recovery rate (ch), which define the virus reproductive number (R). See
Methods for more details.
doi:10.1371/journal.pone.0043115.g001
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longer-lived in DRRT [38,39]. As a result, protection against re-

infection with influenza virus typically lasts longer in DRRT than

in URRT, preventing severe disease (associated with DRRT

infection) but not necessarily infection (of URRT in particular).

The respiratory epithelium therefore is not a continuous and

homogeneous cellular layer available for influenza virus infection,

despite being a common assumption of most previously published

within-host models of influenza virus infection dynamics [20–

22,25,40–46]. Spatial heterogeneities associated with the structure

of the respiratory tract can have marked impact on viral excretion

and infection severity [44]. To account for these spatial

heterogeneities, we applied the mathematical models of within-

host infection dynamics to linearly-connected respiratory com-

partments delineating three different regions: trachea and bronchi

(compartment 1), bronchioles (compartment 2), and alveoli

(compartment 3), associated with one pulmonary lobe. These

three regions were chosen because they correspond to histolog-

ically distinct structures of the respiratory tract. We did not include

the naso-pharyngeal cavity because we aimed at determining

influenza virus optimal tropism in the respiratory tract located

distally from the pharynx (commonly referred to as the lower

respiratory tract). Because the gradients in cell numbers, clearance,

pathogenicity and antibody concentrations follow the same trends

when the naso-pharyngeal cavity is included [3,26,36,37], adding

this compartment to the model is unlikely to change the overall

patterns described below.

To account for the differences in abundance and distribution of

cells with sialic acids with a2,3 or a2,6 linkage to galactose, we

considered two populations of cells in each respiratory compart-

ment. Characteristics other than the linkage type of the sialic acids

(e.g., shape and length as well as glycan modification and

sialylation [47–49]) are undoubtedly important in defining the

suitability of these as receptors for influenza virus. However, the

distribution and abundance along the respiratory tract of the

diversity of sialic acids beyond the linkage type have not been

assessed in sufficient quantitative details for adequate modelling.

Therefore, we assumed that the non-ciliated respiratory epithelial

cells along the airways and type II pneumocytes in the alveoli

harboured a2,3 receptors (recognized by avian influenza viruses),

and that the ciliated respiratory epithelial cells along the airways

and type I pneumocytes in the alveoli harboured a2,6 receptors

(recognized by human influenza viruses), based on attachment

pattern studies [4–6]. This assumption may lead to an overesti-

mation of the number of susceptible cells available for infection;

however, it captured the relevant trends in the relative abundance

of susceptible cells available for avian or human influenza virus

infection, as seen in attachment pattern studies [4–6]. Namely, the

relative abundance of cells available for avian influenza virus

infection increased deeper down the respiratory tract, while that of

cells available for human influenza virus infection was larger in

URRT. The infectivity rate (b) was modulated by affinity

coefficients (a2,3 and a2,6) in the respective cell populations to

account for variable receptor binding affinity profiles. The general

format of the models based on two populations of susceptible cells

and applied to a respiratory compartment (i) was defined as

follows:

Cells with sialic acids with a2,3 linkage to galactose.

Susceptible cells

dS1i=dt~{a2,3bS1iVi{cS1iFi

Infected cells

dI1i=dt~a2,3bS1iVi{aI1i{etI1iTi

Cells refractory to infection

dR1i=dt~cS1iFi ð2Þ

Cells with sialic acids with a2,6 linkage to galactose.

Susceptible cells

dS2i=dt~{a2,6bS2iVi{cS2iFi

Infected cells

dI2i=dt~a2,6bS2iVi{aI2i{etI2iTi

Cells refractory to infection

dR2i=dt~cS2iFi ð3Þ

The dynamics of infection and host immune responses were

linearly connected between the three respiratory compartments, as

follows (for compartment i):

Table 1. Characteristics of the human respiratory tract.

Trachea and bronchi Bronchioles Alveoli Ref.

Epithelial surface area , handkerchief . half a tennis court [26]

Main cell types (type of sialic
acid-galactose linkage)

Ciliated epithelial cells (a2,6)
and goblet cells (a2,3)

Non-ciliated epithelial
cells (a2,3)

Type I pneumocytes (a2,6) and
type II pneumocytes (a2,3)

[4–7,26–28,34]

Particle clearance within
24 hours

High Intermediate Low [29–32]

Severity of damage
(resulting disease)

Mild (tracheo–bronchitis) Moderate (bronchiolitis) Severe (pneumonia) [3,67]

Concentration of IgA High Intermediate None [36,37]

Concentration of IgG Low Intermediate High [36,37]

IgA: immunoglobulins of type A; IgG: immunoglobulins of type G.
doi:10.1371/journal.pone.0043115.t001
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Total infected cells

Ii~I1izI2i

Free infective virus

dVi=dt~vp 1{pð ÞIizpqIi{1zp 1{qð ÞIiz1½ �{

mvVi{eaAiVi{egGiVi{xiVi

Type I interferon

dFi=dt~

prf 1{pð ÞIizpqIi{1zp 1{qð ÞIiz1½ �{mf Fi

Cytotoxic T cells

dTi=dt~prt 1{pð ÞIizpqIi{1zp 1{qð ÞIiz1½ �Dtt{mtTi{etIiTi ð4Þ

Free infective virus present in one compartment (Vi) were

produced by infected cells from the same compartment (Ii) at a

probability 1-p; from the compartment located above (Ii21) at a

probability pq; and from the compartment located below (Ii+1) at a

probability p(1-q). Similarly, type I interferon present in one

compartment (Fi) was produced by infected cells from the same

compartment (Ii) at a probability 1-p; from the compartment

located above (Ii21) at a probability pq; and from the compart-

ment located below (Ii+1) at a probability p(1-q). Lastly, cytotoxic T

lymphocytes proliferating in one compartment (Ti) were stimulat-

ed by infected cells from the same compartment (Ii) at a probability

1-p; from the compartment located above (Ii21) at a probability

pq; and from the compartment located below (Ii+1) at a probability

p(1-q). The quantities pq and p(1-q) were set proportional to the

cross-sectional areas of the smallest bronchi and bronchioles, and

ranged from 1023.5 to 1021.8.

All parameters of the within-host models of infection dynamics

were identical in each respiratory compartment (i), except for the

initial number of susceptible cells (Si,0) (and their death rate if

included; see above), the rate of virus clearance (xi) and the

distribution coefficients of IgA and IgG (cai and cgi, respectively).

The number of cells susceptible to infection in each respiratory

compartment (S0,i) was estimated for the surface area of trachea

and bronchi, bronchioles and alveoli associated with one

pulmonary lobe, based on the Weibel model of the respiratory

tract and published estimates of the proportions of the various cell

types in different regions of the adult respiratory tract [26–28]. It

resulted in 107.7, 108.9 and 1010.2 epithelial cells with sialic acids

with a2,6 linkage to galactose; and 107.5, 109.5 and 1010.5

epithelial cells with sialic acids with a2,3 linkage to galactose in the

trachea and bronchi, bronchioles, and alveoli, respectively. The

virus clearance rate from each of the respiratory compartments (xi)

differed in accordance with data on the clearance rate of particles

depositing in different regions of the respiratory tract [29–32]. It

was estimated at 0.7 day21 in the tracheo-bronchial compartment,

0.5 day21 in the bronchiolar compartment and 0.05 day21 in the

alveolar compartment. Lastly, spatial heterogeneities in the

distribution of IgA and IgG along the respiratory tract were

introduced by adding distribution coefficients, cai and cgi,

respectively, that differed per compartment. The distribution

coefficients were estimated based on data obtained in mice [36,37],

because of the lack of data in humans (Table 2). We assumed that

IgA and IgG were produced centrally upon infection before being

redistributed in each compartment. This was done to mimic active

excretion of IgA and passive diffusion of IgG from serum.

IgA

dAi=dt~caipai

X
Vi

� �
Dta{maAi{eaAiVi

IgG

dGi=dt~cgipgi

X
Vi

� �
Dtg{mgGi{egGiVi ð5Þ

The relative distribution of cytotoxic T cells in different regions

of the respiratory tract is largely unknown therefore no spatial

heterogeneities in their dynamics were introduced. When we

retrospectively introduced higher production rates of cytotoxic T

cells deeper down the respiratory tract, it did not alter the overall

patterns described below (Fig. S3).

Fitting procedures. Although some parameters of the

within-host models of infection dynamics could be derived from

available data on human influenza virus infection, a number of

parameters required estimation (Table 2). This was done by fitting

the models by non-linear least squares to datasets of viral excretion

in nasal washes [50], type I interferon concentration in nasal

washes [51], IgA and IgG concentrations in serum [52] of human

volunteers infected with seasonal influenza virus and, due to lack

of human data, cytotoxic T lymphocyte (CD8+) counts in

broncho-alveolar lavages of mice infected with seasonal influenza

virus (mice being the most often used animal model of human

immune response dynamics) [53,54]. The sum of squared residuals

(SSR) between the experimental data and the models’ results in log

scale was minimized using the function optim in R [55]. Although

the datasets used for the fitting procedures referred to samples

collected from specific locations within the respiratory tract or

from serum, we assumed that these data were representative of the

dynamics of infection and immune responses in the respiratory

tract as a whole; hence the curves produced by the models in each

compartment were summed and fitted altogether to the data.

Similarly to previously published models, simple and more

complex versions of the within-host model of infection dynamics

quantitatively captured the central features of the dynamics of viral

infection and host immune responses (Fig. 2). However, we

emphasize that some care must be taken when interpreting the

individual parameter estimates because of possible redundancy

among the parameters of simple and a fortiori more complex versions

of the model. Nevertheless, uncertainty analyses on sets of estimated

parameters using latin hypercube sampling [56] revealed that fitted

estimates belonged to a robust parameter space that produced

dynamics consistent with the available data (Fig. S1).

Mathematical Model of Cross-scale Infection Dynamics
The within-host models of infection dynamics were subsequent-

ly nested into between-host models of the classic SIR (Susceptible-

Infected-Recovered) type in a homogeneous and well-mixed

human population:

Susceptible hosts

dSh=dt~{bhShIh

Tissue Tropism and Fitness of Influenza Virus

PLOS ONE | www.plosone.org 5 August 2012 | Volume 7 | Issue 8 | e43115



Infected hosts

dIh=dt~bhShIh{ahIh{chIh

Recovered hosts

dRh=dt~chIh ð6Þ

Susceptible hosts Sh become infected at a transmission rate bh.

Infected hosts Ih die from infection at a mortality rate ah or

recover from infection at a recovery rate ch.

Quantitative assessment of viral excretion and

pathogenicity. The transmission rate (bh), mortality rate (ah)

and recovery rate (ch) of the population-level SIR model were

estimated based on quantitative assessment of viral excretion (X)

and pathogenicity (P) derived from the within-host models of

infection dynamics. Viral excretion (X) was approximated as the

total amount of cleared virus above a transmission threshold (T),

which was parameterized to obtain an infectious period (LX)

within the range of published measures of influenza infectious

period (3 to 5 days) [57]:

X~
X

i

ð
xiVi{Tð Þdt for xiVi§T ð7Þ

The use of a transmission threshold (T) allowed accounting for a

minimal infectious dose below which virus transmission to a new

individual was not successful.

We approximated pathogenicity (P) as the total number of

infected cells (I) in the simple versions of the model:

P~
X

i

ð
biSiVið Þdt ð8Þ

Because the lesions and clinical signs of influenza are a result of

the death of respiratory epithelial cells, influx of inflammatory

cells, and correlate with the levels of produced cytokines, we

approximated pathogenicity (P) as the sum of the total number of

infected cells, cytotoxic T lymphocytes and type I interferon in the

more complex versions of the model; these sums were calculated

over the duration of the infectious period (LX). X and P are

correlates rather than explicit measures of viral excretion and

pathogenicity, similarly to what can be measured empirically.

Estimation of SIR model transmission, mortality and

recovery rates. Linear and non-linear (logistic) functions were

explored to characterize the transmission and mortality rates (bh

and ah, respectively) as functions of viral excretion (X) and

pathogenicity (P). The transmission rate (bh) was set as a positive

function of viral excretion (X) and a negative function of

pathogenicity (P). Pathogenicity (P) was used to estimate the

transmission rate (bh) because lesions and clinical signs associated

with influenza may on the one hand impede viral transmission

(e.g., through damage to the muco-ciliary escalator, mechanical

obstruction of the airways or both) and on the other hand impair

infected individuals thereby reducing contacts between infected

and non-infected individuals. The maximum value of bh was fixed

so that R0 reached a maximum between 2.5 and 3.5, in

accordance with R0 estimates of pandemic influenza viruses in

the human population [58,59]. The mortality rate (ah) was set as a

Table 2. Range of parameter estimates of the within-host models of infection dynamics.

Parameter Value Ref.

b Infectivity rate{ (log) 210.0 to 26.0 explored

c Refractory state rate (log) 23 to 21.9 fitted

1/a Lifespan of infected cells 12 hours [80]

vp Virus production rate (log) 2 fixed

1/mv Lifespan of virus particles 12 hours [81]

x Viral clearance rate (day21) 0.7 (x1); 0.5 (x2); 0.05 (x3) [29–32]

prf Production rate of type I interferon (log) 21.9 to 20.9 fitted

prt Proliferation rate of cytotoxic T cells (log) 23.1 to 22.5 fitted

pra Production rate of IgA (log) 22.2 to 7.0 fitted/fixed{

prg Production rate of IgG (log) 23.1 to 7.0 fitted/fixed{

ca Distribution coefficient of IgA 0.7 (ca1); 0.3 (ca2); 0 (ca3) [37]

cg Distribution coefficient of IgG 0.01 (cg1); 0.3 (cg2); 0.7 (cg3) [37]

1/mf Lifespan of type I interferon 8 hours [82]

1/mt Lifespan of cytotoxic T cells 10 days [83]

1/ma Lifespan of IgA 5 days [84–86]

1/mg Lifespan of IgG 20 days [84–86]

et Killing rate of cytotoxic T cells (log) 23.3 to 22.0 fitted

ea Neutralization rate of IgA (log) 212.2 to 29.3 fitted

eg Neutralization rate of IgG (log) 210.6 to 29.1 fitted

{Rates are given per hour if not otherwise indicated.
{In more complex versions of the models, IgA and IgG production rates were fixed to the maximal value indicated, to reduce the number of redundant free parameters.
doi:10.1371/journal.pone.0043115.t002
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positive function of pathogenicity (P). The maximum value of ah

was fixed based on the case-fatality rate of highly pathogenic avian

influenza H5N1, estimated at 60% [60]. The recovery rate (ch)

was set as the reciprocal of the duration of the infectious period

(LX) when surviving infection:

ch~1=LX e{ahLX ð9Þ

The actual relationships between viral excretion and pathoge-

nicity on the one hand, and transmission, mortality and recovery

rates of influenza on the other currently are poorly understood,

and remain to be empirically characterized. Therefore, the

framework described here is an exploration of the possible

reciprocal feedbacks between tissue tropism and reproductive

fitness, based on the general transmission-virulence trade-off

hypothesis, i.e., on the assumption that a certain level of

pathogenicity maximizes transmission [61]. As such, we assumed

transmissibility was possible, regardless of receptor binding affinity

profile, and sustained human-to-human transmission only oc-

curred when the virus basic reproductive number was above one

(R0.1; see below).

Calculation of influenza virus reproductive number. In

an immunologically naı̈ve population, the virus basic reproductive

number (R0) was calculated as:

R0~bh= ahzchð Þ ð10Þ

For R0.1, the effective reproductive number of the virus in a

population with pre-existing immunity (Re) was calculated one

year following virus circulation in an immunologically naı̈ve

population as:

Re~S�bh= ahzchð ÞzC�bhp= ahpzchp

� �
ð11Þ

where S* is the proportion of individuals immunologically naı̈ve to

the virus and equals 1/R0; and C* is the proportion of individuals

with pre-existing immunity following infection the preceding year

and equals 1–1/R0. The subscripts h and hp define rates following

primary infection and re-infection with influenza virus, respec-

tively, as determined by the measures of viral excretion (X) and

pathogenicity (P) in a naı̈ve individual and in an individual with

pre-existing immunity, respectively. Contour plots of influenza

virus reproductive number were drawn using lattice functions in

R.

Results

Optimal Receptor Binding Affinity Profile
We determined the optimal receptor binding affinity profile of

influenza virus by varying the affinity coefficients a2,3 and a2,6 from

0 to 1. Influenza virus optimal receptor binding affinity profile was

defined as the combination of affinity coefficients a2,3 and a2,6 that

maximized the virus basic reproductive number (R0) in a human

population with no pre-existing immunity. The framework

predicted that a preferential affinity for sialic acids with a2,6

linkage to galactose (a2,6. a2,3) maximizes R0, and thus represents

the optimal strategy for the sustained circulation of influenza virus

in the human population (Fig. 3A). These results are in accordance

with preferred a2,6 receptor binding affinity of human influenza

viruses. However, there was a region in the parameter space of

preferential a2,3 receptor binding affinity (a2,3. a2,6) that resulted

in R0.1 (Fig. 3A).

In the above computation, virus pathogenicity (P) was calculated

as the unweighed sum of pathogenicity (Pi) in each respiratory

compartment (i):

P~
X

Pi ð12Þ

In other words, similar extent of damage caused to the

epithelium in each respiratory compartment contributed equally

to the overall pathogenicity of the infection (P). To further take

into account the more delicate nature and vital function of

bronchioles and alveoli, we alternatively calculated P as a weighed

sum of Pi where the contribution of pathogenicity in the

bronchiolar compartment (P2) and in the alveolar compartment

(P3) was 102 and 103 times as much, respectively, as that in the

tracheo-bronchial compartment (P1):

Figure 2. Within-host model dynamics. Output of within-host
models is represented by curves. Black line: mean values across models;
grey shaded area: standard deviation. Data points from empirical
studies are represented by symbols. A. Viral shedding; B. Type I
interferon; C. Cytotoxic T cells; D. Immunoglobulins of type A (IgA;
triangles) and IgG (crosses). HI: hemagglutination inhibition.
doi:10.1371/journal.pone.0043115.g002
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Figure 3. Optimal receptor binding affinity patterns. Contour plots of influenza virus basic reproductive number R0 (color scales) are drawn
when the affinity coefficients a2,3 (x axis) and a2,6 (y axis) are varied from 0 to 1. For all graphs, the initial number of susceptible cells differ per
respiratory compartment to reflect the heterogeneities in abundance and distribution of epithelial cells with sialic acids with a2,3 or a2,6 linkage to
galactose. The effect of heterogeneities in viral clearance rates (xi) and in the contribution of pathogenicity in each respiratory compartment (Pi) to
the overall virus pathogenicity (P) on the virus R0 is determined, when either non-linear or linear functions link within-host model output of viral
excretion (X) and pathogenicity (P) to between-host model parameters. For panels A to D, x1. x2. x3; for panels E and F, x1 = x2 = x3. For panels A,
C and E, P =g Pi; for panels B, D and F, P = P1+102 P2+103 P3. For panels A, B, E and F, non-linear functions link within-host model output to
between-host model parameters; for panels C and D, linear functions link within-host model output to between-host model parameters.
doi:10.1371/journal.pone.0043115.g003
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P~P1z102P2z103P3 ð13Þ

Under these conditions, preferential a2,6 receptor binding

affinity maximized R0, as previously. However, preferential a2,3

receptor binding affinity generally resulted in R0,1 (Fig. 3B). This

suggests that heterogeneities in the extent of damage associated

with the infection in different regions of the respiratory tract may

contribute to the limited ability of influenza virus with preferred

a2,3 receptor binding affinity (e.g., avian influenza viruses) to

efficiently circulate in the human population.

In the above computations, non-linear functions were used to

link within-host model output of viral excretion (X) and

pathogenicity (P) to between-host model transmission rate (bh),

mortality rate (ah), and recovery rate (ch). Similar optimal receptor

binding affinity patterns were obtained when using linear functions

(Fig. 3C and 3D). To determine whether these optimal patterns

were driven solely by the differences in the number of susceptible

cells in each respiratory compartment (S0,i), we set the virus

clearance rates (xi) or IgA and IgG distribution coefficients (cai and

cgi) to identical values in all three respiratory compartments, in

combination with equal or heterogeneous relative contributions of

pathogenicity in each compartment. Setting virus clearance rates

to identical values (x1 =x2 = x3) resulted in opposite patterns

depending on the relative contributions of pathogenicity in each

compartment. When the relative contributions were equal (Eq.

12), a preferential a2,3 receptor binding affinity maximized R0

(Fig. 3E); in contrast, heterogeneities (Eq. 13) resulted in optimal

a2,6 receptor binding affinity (Fig. 3F). On the other hand, setting

IgA and IgG distribution coefficients to identical values (ca1 = -

ca2 = ca3 and cg1 = cg2 = cg3) did not alter the optimal receptor

binding affinity patterns, regardless whether the relative contribu-

tions of pathogenicity in each compartment were equal or

heterogeneous (data not shown). Therefore, the models suggest

that spatial heterogeneities in virus clearance, virus pathogenicity

or both may drive influenza virus towards a preference for a2,6

receptors.

Optimal Infectivity Rates
Empirically, the tissue tropism of influenza viruses is not

exclusively determined by their receptor binding affinity for sialic

acids with a2,3 or a2,6 linkage to galactose. For example, sialic

acid shape and length, as well as glycan modifications such as

fucosylation, sulphation, and additional sialylation are known to

modulate influenza virus binding affinity [47–49]. Furthermore,

besides receptor binding affinity, variable replication efficiency can

characterize related virus variants and result in different infection

levels in different regions of the respiratory tract [62–64].

Accordingly, we explored the effect of variable infectivity for cells

in the different regions of the respiratory tract on the reproductive

fitness of human influenza virus (with affinity coefficients a2,3 = 0

and a2,6 = 1), by independently varying the infectivity rate (bi) in

each respiratory compartment (i) from 10210 to 1026 h21. Here,

the maximum value of the mortality rate (ah) was based on the

case-fatality rate of the 1918 pandemic influenza, estimated at 2%

[2]. We determined the optimal tissue tropism of human influenza

virus circulating in a completely naı̈ve population (e.g., during a

pandemic), as well as in a population with pre-existing immunity

(e.g., during the following season). Optimal tissue tropism or

optimal infectivity rates were defined as the combination of

infectivity rates (bi) that maximized the virus reproductive number

at the population level.

The optimal tissue tropism of human influenza virus in an

immunologically naı̈ve population was characterized by an

infectivity rate in the tracheo-bronchial compartment (b1) that

was approximately 100-fold greater than in the bronchiolar

compartment (b2; Fig. 4A); the infectivity rate in the alveolar

compartment (b3) that maximized R0 was consistently the lowest

in the explored range (1000-fold lower than b1). The optimal b2/

b1 ratio was maintained above 1 as long as the initial number of

susceptible cells in the bronchiolar compartment (Si,2) was greater

than that in the tracheo-bronchial compartment (Si,1; Fig. 5).

These trends were obtained whether the relative contributions of

pathogenicity in each compartment (Pi) to overall pathogenicity (P)

were equal or heterogeneous (Eq. 12 and 13, respectively). These

results suggest that the heterogeneities in the abundance of target

cells along the respiratory tract contribute to decreasing optimal

infectivity rates of human influenza virus deeper down the

respiratory tract.

The presence of pre-existing immunity changed the optimal

tissue tropism of human influenza virus: optimal infectivity rate in

the tracheo-bronchial compartment (b1) was higher, optimal

infectivity rate in the bronchiolar compartment (b2) was lower,

while optimal infectivity rate in the alveolar compartment (b3)

remained lowest within the explored range (Fig. 4B). As expected,

the presence of pre-existing immunity resulted in a decrease in the

reproductive number of human influenza virus. The maximal

values of Re did not exceed 1.7 and were in the upper range of

estimates of the reproductive number of seasonal influenza viruses

[65]. The lower reproductive number, together with the changes

in optimal tissue tropism, resulted in a decrease in both the

infection rate and case-fatality rate in the partially immune

population, compared to those in the immunologically-naı̈ve

population (Fig. 4C). The reduced case-fatality rate was caused in

part by reduced pathogenicity in the bronchiolar compartment

(P2) both in naı̈ve and immune individuals (Fig. 4D); this was

associated with the reduced optimal infectivity rate in the

bronchiolar compartment (b2). The models thus indicate that

influenza viruses circulating in partially-immune populations may

have increased tropism for URRT and be less pathogenic than

influenza viruses circulating in immunologically naı̈ve populations,

due to decreased tropism for DRRT.

Sensitivity to Model Structure and Parameters
Similar tropism patterns (Fig. S2 and S3) were produced by

both simple and more complex versions of the within-host model

of infection dynamics, combining either linear or non-linear

functions linking within-host model output of viral excretion (X)

and pathogenicity (P) to between-host model transmission rate

(bh), mortality rate (ah), and recovery rate (ch). Sensitivity analyses

to variations in the model parameters that were identical in all

three respiratory compartments were performed. Latin hypercube

sampling [56] was used to generate 100 sets of randomly sampled

non-fitted parameter values within 50%–200% of their initial

values, against which the estimated parameters were fitted by non-

linear least squares. Of these 100 sets of parameters, 10 were

randomly chosen to determine the tropism patterns of human

influenza virus in an immunologically naı̈ve and in a partially-

immune population. For all models, the optimal infectivity rate in

the tracheo-bronchial compartment (b1) was consistently higher

when the virus was circulating in a partially-immune population

than when it was circulating in a naı̈ve population; conversely, the

optimal infectivity rate in the bronchiolar compartment (b2) was

consistently higher when the virus was circulating in a naı̈ve

population (Fig. S2). Therefore, the observed differences between

the optimal tissue tropism of human influenza virus circulating in
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an immunological naı̈ve population and that of human influenza

virus circulating in a partially-immune population were not

sensitive to the overall model structure and parameters common

to all three respiratory compartments. We further evaluated the

impact of each of the within-host model parameters that differed

per respiratory compartment on these observed differences.

Setting either the initial number of susceptible cells, the virus

clearance rate, or IgA distribution coefficient in each compartment

to equal values (S0,1 = S0,2 = S0,3, x1 = x2 =x3, or ca1 = ca2 = ca3,

respectively) did not alter the observed differences in optimal tissue

tropism patterns in naı̈ve and partially-immune populations (data

not shown). In contrast, setting IgG production rate in each

compartment to equal values (cg1 = cg2 = cg3) abolished these

differences, and resulted in the same optimal infectivity rates in

each compartment, independently of pre-existing immunity levels.

This suggests that long-lived IgG present more abundantly in

DRRT than in URRT following infection may drive influenza

virus tissue tropism towards URRT in a human population with

pre-existing immunity.

In conclusion, the observed optimal tropism patterns obtained

in this study arose from the characteristic differences between the

three respiratory compartments, and were independent of the

structure or level of complexity of the within-host model of

infection in each of these compartments. First, the optimal

receptor binding affinity for sialic acids with a2,6 linkage to

galactose was associated with differences in virus clearance or virus

pathogenicity (or the interactions between both) in the three

respiratory compartments. Second, the optimal infectivity rates in

the three respiratory compartments, which exhibited a decreasing

trend towards DRRT, were associated with the expanding cell

pool deeper down the respiratory tract, in combination with lower

clearance rates. Lastly, the increased URRT tropism and

Figure 4. Optimal patterns of tissue tropism and associated morbidity and mortality burdens. Contour plots of influenza virus
reproductive number (color scales) in an immunologically naı̈ve population (R0; A) and in a partially-immune population (Re; B) are drawn when the
infectivity rates b2 (x axis) and b1 (y axis) are varied. In all cases, the infectivity rate b3 is kept constant and equals the lowest infectivity rate in the
explored range (10210 h21). Note that the optimal tissue tropism differs in an immunologically naı̈ve and in a partially-immune population. C. The
total number of cases per 10 000 individuals (light grey bars) and the number of fatal cases per 100 000 individuals (black bars) are represented for
the influenza virus with optimal tissue tropism in an immunologically naı̈ve population (year 0) and for the influenza virus with optimal tissue tropism
in a partially-immune population (year 1). Their respective case-fatality rate is indicated by a dark grey diamond. D. The percentage reduction in
pathogenicity in the bronchiolar compartment (P2) of the influenza virus with optimal tissue tropism in a partially-immune population is shown in a
naı̈ve individual and in an individual with pre-existing immunity in year 1 compared to that of the influenza virus with optimal tissue tropism in an
immunologically naı̈ve population (year 0).
doi:10.1371/journal.pone.0043115.g004
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decreased DRRT tropism of influenza virus circulating in a

population with pre-existing immunity were associated with spatial

heterogeneities in the distribution and concentration of IgG in the

three respiratory compartments.

Discussion

The use of cross-scale models for influenza virus infection that

link within-host dynamics in a spatially-structured respiratory tract

to between-host dynamics at the population level, provides

important insights into the possible selective pressures driving

tissue tropism in the respiratory tract. To the best of our

knowledge, these are the first such models developed at that

interface. These models suggest that heterogeneities in virus

clearance, virus pathogenicity, or the interactions between both,

drive the receptor binding affinity of influenza virus towards sialic

acids with a2,6 linkage to galactose. These models also indicate

that the expanding cell pool deeper down the respiratory tract may

lead to decreasing optimal infectivity rates towards DRRT, and

that pre-existing immunity may drive influenza virus tissue tropism

towards URRT.

The prediction of the cross-scale models that preferential a2,6

receptor binding affinity maximizes influenza virus reproductive

fitness in a human population corresponds with field data, which

show that both sporadic influenza pandemics and annual influenza

epidemics are caused by influenza viruses with preferential a2,6

receptor binding affinity [2,34,66]. In the models, these patterns

were driven by spatial heterogeneities in virus clearance or virus

pathogenicity (or both) along the respiratory tract. Although the

assumed heterogeneities in influenza virus clearance and patho-

genicity associated with the location of infection currently cannot

be quantified from empirical data, indications for these exist. The

clearance of particles towards the pharyngeal area relies mainly on

the muco-ciliary escalator, whereby mucus secreted by goblet cells

and submucosal glands traps organic and inorganic particles

before being propelled towards the pharynx by the movements of

the cilia [29]. Extensive experimental studies have been performed

on the clearance rates of magnetic or radio-labeled particles of

variable size depositing in different regions of the respiratory tract

of human volunteers (e.g., [29–32]). They revealed that the

proportion of particles that are rapidly cleared towards the

pharyngeal area decreases when they are deposited deeper down

the respiratory tract. In particular, fast-cleared particles are mainly

deposited along the larger airways. In contrast, the smaller airways

are characterized by a higher proportion of slow-cleared particles,

and most particles that deposit in the alveolar region are mainly

cleared slowly by alveolar macrophages [33]. It is likely that virus

particles produced in URRT are likewise being cleared towards

the pharyngeal area at a higher rate than those produced in

DRRT. As a consequence, the transmission of virus particles

originating from URRT may be favored over that of virus particles

originating from DRRT.

Spatial heterogeneities in pathogenicity associated with the

location of influenza virus infection are well documented [3].

Primary viral pneumonia can occur upon acute influenza virus

infection. It is a severe, if not fatal, respiratory disease resulting

from infection of epithelial cells in DRRT and associated host

immune responses. Because damage following DRRT infection

affects vital gas exchange, it can result in respiratory insufficiency

and death. In contrast, infection of URRT generally results in less

severe disease, such as rhinitis and tracheo-bronchitis, associated

with mild to moderate respiratory and general symptoms [3,67].

Spatial heterogeneities in pathogenicity can result either from the

higher number of infected cells in DRRT compared to that in

URRT, due to the larger initial cell pool; or from damage that has

relatively more severe consequences on the infected individual

when located in DRRT than in URRT (i.e., when roughly the

same number of cells are infected in both regions). We explored

both assumptions by setting the relative contributions of patho-

genicity in each respiratory compartment to either equal values or

to heterogeneous values increasing deeper down the respiratory

tract. Although the positive impact of coughing induced by URRT

infection on transmission was not explicitly taken into account,

heterogeneous contributions of pathogenicity increasing deeper

down the respiratory tract would include such assumption. While

the prediction of optimal receptor binding affinity for a2,6

receptors was maintained under both assumptions, the mainte-

nance of R0 below 1 for viruses with preferred a2,3 receptor

binding affinity was dependent on heterogeneous relative contri-

butions of damage in each respiratory compartment to the overall

pathogenicity of infection. Therefore, the increased pathogenicity

of infection located deeper down the respiratory tract may

contribute to the limited ability of influenza viruses with preferred

a2,3 receptor binding affinity (e.g., avian influenza viruses) to

efficiently circulate in the human population.

We further explored the optimal tissue tropism of human

influenza viruses (with strict a2,6 receptor binding affinity) when

circulating in a human population with or without pre-existing

immunity. By allowing variable infectivity rates in the three

respiratory compartments, the models predicted that progressive

reduction of the virus infectivity for epithelial cells towards DRRT

maximized influenza virus reproductive fitness. This pattern was

associated with the expanding cell pool deeper down the

respiratory tract, in association with decreasing clearance rates.

The relative infection levels of different regions of the respiratory

tract by influenza virus are not often reported in the literature.

Because of the multifocal nature of influenza virus infection, it can

be difficult empirically to quantitatively compare the proportion of

infected cells in different regions of the respiratory tract.

Nevertheless, the results of the models tend to be consistent with

empirical data. In particular, seminal work by Smith and Sweet

[63] clearly emphasized the heterogeneities in infection levels of

Figure 5. Relationship between optimal b2/b1 ratio and Si,2/Si,1

ratio in the absence of pre-existing immunity. The optimal
infectivity rate in the bronchiolar compartment (b2) is smaller than the
optimal infectivity rate in the tracheo-bronchial compartment (b1)
provided that the initial number of susceptible cells in the bronchiolar
compartment (Si,2) is larger than the initial number of susceptible cells
in the tracheo-bronchial compartment (Si,1).
doi:10.1371/journal.pone.0043115.g005
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various strains of influenza virus in URRT and DRRT of ferrets

(considered the most appropriate animal model for influenza

pathogenesis in humans [4–6]). Infection levels were typically

found to be higher in URRT than in DRRT, and infection of

alveolar epithelial cells was very rarely observed. In humans,

infection is also typically more marked in URRT than in DRRT,

and the absence of viral antigen in alveolar cells has also been

noticed following fatal infection with human influenza virus

[62,65,68,69]. Among the factors potentially explaining low levels

of influenza virus infection in the alveoli were lower viral

production rates by alveolar epithelial cells [63]. Although the

viral production rate was kept constant in the models, redundancy

does occur between viral production rate and infectivity rate. Thus

our findings are consistent with these observations, and may

provide an insight into the evolutionary mechanism behind the

lower infectivity of human influenza virus for DRRT.

Comparing the optimal tissue tropism of human influenza virus

in an immunologically naı̈ve population and in a population with

pre-existing immunity indicated that pre-existing immunity may

drive influenza virus tissue tropism even more towards URRT.

Associated with this, the case-fatality rate of human influenza virus

circulating in a partially immune population was reduced

compared to that of human influenza virus circulating in an

immunologically naı̈ve population, in part due to reduced

pathogenicity in DRRT. These results suggest that the tissue

tropism of influenza viruses may vary according to pre-existing

immunity levels in the human population. Low pre-existing

immunity levels may result in the circulation of viruses with

increased tropism for DRRT–and thus more pathogenic viruses–

compared to that of viruses circulating in a population with high

pre-existing immunity levels. This prediction is consistent with

more frequent observation of infected cells in DRRT of naı̈ve

ferrets inoculated with pandemic influenza viruses than in DRRT

of naı̈ve ferrets inoculated with seasonal influenza viruses [64,70].

Pre-existing immunity is also known to drive the evolution of

immune escape variants of seasonal influenza virus. In particular,

the surface proteins of seasonal influenza virus acquire amino-acid

substitutions through genetic mutations that make them less

recognizable by neutralizing antibodies targeting the surface

proteins of preceding strains. Some mutations have greater

antigenic effect than others [71], effectively reducing the level of

pre-existing immunity. As a result, immune escape variants with

large antigenic effect generally cause larger epidemics than do

preceding strains [72,73]. We may infer from our results that

immune escape variants may also have higher tropism for DRRT

than do preceding strains, and cause more severe disease. This

would be the case if their antigenicity was sufficiently distant from

previously-circulating strains that their circulation in the popula-

tion would be comparable to that of a virus circulating in a naı̈ve

population. Although variations in the tissue tropism of seasonal

influenza viruses in association with immune escape have not been

studied in detail, this prediction is in accordance with increased

DRRT tropism of a recent drift variant of seasonal influenza virus

H3N2 compared to that of strains circulating the preceding years

[62].

Because tissue tropism of influenza virus is among the

phenotypic traits at the interface of within- and between-host

infection dynamics, an individual host may not be considered as a

black box with a homogeneous and continuous cell monolayer

available for virus replication. Variations in tissue tropism may

result in variations in transmission and infectious period, which are

at the basis of the virus reproductive fitness, therefore creating

reciprocal feedbacks between within- and between-host infection

dynamics. The proposed cross-scale framework has shed light on

potential selective pressures driving influenza virus tissue tropism

along the respiratory tract, and has predicted patterns that are

consistent with empirical observations. However, as with most

models, there are a number of caveats. The framework builds on

assumptions regarding the relationships connecting within-host

infection dynamics and between-host transmission dynamics that

currently cannot be verified due to lack of data. In particular, the

models were built based on the general transmission-virulence

trade-off hypothesis [61]. We assumed that disease negatively

impacted virus transmission rate because it can impair infected

individuals and therefore reduce their contact with other

individuals; and also because respiratory lesions and associated

inflammation may impair the muco-ciliary escalator and mechan-

ically obstruct the airways, thus reducing excretion of virus

particles. We propose that these relationships may be inferred by

empirical testing of the predictions of this framework. Especially,

the relationships between viral pathogenicity, excretion, and

transmission in association with the location of infection along

the respiratory tract may be characterized in animal models

reproducing influenza virus pathogenesis as described in humans,

such as the ferret. As part of the between-host component of the

framework, only a well-mixed and homogeneous population of

human hosts was considered, and heterogeneities in transmission

rates and pre-existing immunity levels at the host population level

were ignored. For example, it is generally recognized that school-

age children play a major role in the transmission of influenza

virus [74–77]. Furthermore, pre-existing immunity levels are

strongly age-dependent [78,79]. This calls for further development

of the framework to include host population heterogeneities, in

association with empirical testing of its predictions. Because of

their very nature, even the simplest cross-scale models have a high

number of free parameters, and their complexity can rapidly

increase both at the within-host and between-host levels. However,

sensitivity analyses and model comparisons demonstrated that the

key fitness results arising from this study are robust. These key

fitness results represent hypotheses that are testable in an empirical

setting. As such, this model framework provides a template for the

mechanistic study of influenza virus cross-scale evolutionary and

epidemiological dynamics.

Supporting Information

Figure S1 Uncertainty analysis to simultaneous varia-
tions of within-host model parameter values. A. Peak

timing (days) and B. maxima (log) of viral excretion (1), type I

interferon production (2), cytotoxic T cell proliferation (3), and

immunoglobulins of type A (IgA; 4) and IgG (5) production, based

on 1000 sets of parameters generated by latin hypercube sampling,

ranging from 50% to 200% the fitted values. Thick line is the

median value, box lower and upper limits are the second and

fourth quartiles, and lower and upper whiskers are minimum and

maximum values.

(DOC)

Figure S2 Optimal tissue tropism of human influenza
viruses in populations with different levels of pre-
existing immunity based on simple and more complex
versions of the models (including models with param-
eter sets generated by latin hypercube sampling; see text
for details). The maximal reproductive number of human

influenza viruses is plotted for each value of their infectivity rate

for (A) tracheal and bronchial, (B) bronchiolar, and (C) alveolar

epithelial cells in a naı̈ve population (black) and in a partially

immune population (grey). Optimal tropisms are marked by a
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square. Infectivity rates are increasing from 1 to 5 as they differ per

model. Standard errors are represented.

(DOC)

Figure S3 Optimal patterns of tissue tropism based on
more complex versions of the model. Contour plots of

influenza virus reproductive number (color scales) in an immuno-

logically naı̈ve population (R0; left column) and in a partially-

immune population (Re; right column) are drawn when the

infectivity rates b2 (x axis) and b1 (y axis) are varied. In all cases,

the infectivity rate b3 is kept constant and equals the lowest

infectivity rate in the explored range (10210 h21). First row: the

within-host model of infection dynamics includes birth and death

processes of respiratory epithelial cells. Second row: the within-

host model of infection dynamics includes additional components

of the immune response, namely antigen-presenting cells, NK

cells, T-helper cells, plasma-B cells and CTL. CTL production

rate increases deeper down the respiratory tract. Third row: the

within-host model of infection dynamics includes an exposed state

characterizing infected-non-infectious epithelial cells (SEI-type

model). Infectivity rates increases from 1 to 5 as they differ per

model.

(DOC)

Acknowledgments

The authors thank Julia Gog and Jessica Metcalf for useful input and

assistance with the modeling, and Guus Rimmelzwaan, Sunetra Gupta and

Mercedes Pascual for extensive discussion on the dynamics of influenza

virus infection and associated immune responses.

Author Contributions

Conceived and designed the experiments: LAR TK BTG ADMEO APD.

Performed the experiments: LAR. Analyzed the data: LAR. Contributed

reagents/materials/analysis tools: LAR BTG APD. Wrote the paper: LAR

TK BTG ADMEO APD.

References

1. World_Health_Organization (2005) Influenza vaccines: WHO position paper.

Revue Epidemiologique Hebdomadaire 33: 279–287.

2. Taubenberger JK, Morens DM (2006) 1918 influenza: the mother of all

pandemics. Emerg Infect Dis 12: 15–22.

3. Kuiken T, Taubenberger JK (2008) Pathology of human influenza revisited.
Vaccine 26S: D59–D66.

4. van Riel D, den Bakker MA, Leijten LME, Chutinimitkul S, Munster V, et al.
(2010) Seasonal and pandemic human influenza viruses attach better to human

upper respiratory tract epithelium than avian influenza viruses. Am J Pathol 176:

1614–1618.

5. van Riel D, Munster VJ, de Wit E, Rimmelzwaan GF, Fouchier RA, et al. (2006)

H5N1 virus attachment to lower respiratory tract. Science 312: 399.

6. van Riel D, Munster VJ, de Wit E, Rimmelzwaan GF, Fouchier RA, et al. (2007)
Human and avian influenza viruses target different cells in the lower respiratory

tract of humans and other mammals. Am J Pathol 171: 1215–1223.

7. Shinya K, Ebina M, Yamada S, Ono M, Kasai N, et al. (2006) Avian flu:

influenza virus receptors in the human airway. Nature 440: 435–436.

8. Sorrell EM, Schrauwen EJA, Linster M, de Graaf M, Herfst S, et al. (2011)
Predicting ‘airborne’ influenza viruses: (trans)mission impossible? Curr Opin

Virol doi:10.1016/j.coviro.2011.07.003.

9. Tumpey TM, Maines TR, Van Hoeven N, Glaser L, Solorzano A, et al. (2007)
A two-amino acid change in the hemagglutinin of the 1918 influenza virus

abolishes transmission. Science 315: 655–659.

10. Wan H, Sorrell EM, Song H, Hossain MJ, Ramirez-Nieto G, et al. (2008)

Replication and transmission of H9N2 influenza viruses in ferrets: evaluation of

pandemic potential. PLoS One 3: e2923.

11. Van Hoeven N, Pappas C, Belser JA, Maines TR, Zeng H, et al. (2009) Human

HA and polymerase subunit PB2 proteins confer transmission of an avian
influenza virus through the air. Proc Natl Acad Sci U S A 106: 3366–3371.

12. Steel J, Lowen AC, Mubareka S, Palese P (2009) Transmission of influenza virus

in a mammalian host is increased by PB2 amino acids 627K or 627E/701N.
PLoS Pathog 5: e1000252.

13. Herfst S, Schrauwen EJ, Linster M, Chutinimitkul S, de Wit E, et al. (2012)

Airborne transmission of influenza A/H5N1 virus between ferrets. Science 336:
1534–1541.

14. Anderson RM, May RM (1991) Infectious diseases of humans: dynamics and
control: Oxford University Press. 757 p.

15. Mideo N, Alizon S, Day T (2008) Linking within- and between-host dynamics in

the evolutionary epidemiology of infectious diseases. Trends Ecol Evol 23: 511–
517.

16. Pepin KM, Volkov I, Banavar JR, Wilke CO, Grenfell BT (2010) Phenotypic

differences in viral immune escape explained by linking within-host dynamics to
host-population immunity. J Theor Biol 265: 501–510.

17. Volkov I, Pepin KM, Lloyd-Smith JO, Banavar JR, Grenfell BT (2010)
Synthesizing within-host and population-level selective pressures on viral

populations: the impact of adaptive immunity on viral immune escape. J R Soc

Interface 7: 1311–1318.

18. Bajaria SH, Webb G, Cloyd M, Kirschner D (2002) Dynamics of naive and

memory CD4+ T lymphocytes in HIV-1 disease progression. J Acquir Immune

Defic Syndr 30: 41–58.

19. Dahari H, Feliu A, Garcia-Retortillo M, Forns X, Neumann AU (2005) Second

hepatitis C replication compartment indicated by viral dynamics during liver
transplantation. J Hepatol 42: 491–498.

20. Saenz RA, Quinlivan M, Elton D, Macrae S, Blunden AS, et al. (2010)

Dynamics of Infection and Pathology in Influenza. J Virol.

21. Lee HY, Topham DJ, Park SY, Hollenbaugh J, Treanor J, et al. (2009)

Simulation and prediction of the adaptive immune response to influenza A virus

infection. J Virol 83: 7151–7165.

22. Miao H, Hollenbaugh JA, Zand MS, Holden-Wiltse J, Mosmann TR, et al.

(2010) Quantifying the early immune response and adaptive immune response

kinetics in mice infected with influenza A virus. J Virol 84: 6687–6698.

23. van den Brand JMA, Stittelaar KJ, van Amerongen G, Reperant LA, de Waal L,

et al. (in press) Comparison of temporal and spatial dynamics of seasonal H3N2,

pandemic H1N1 and highly pathogenic avian influenza H5N1 virus infections in

ferrets. PLoS ONE.

24. Rawlins EL, Hogan BL (2006) Epithelial stem cells of the lung: privileged few or

opportunities for many? Development 133: 2455–2465.

25. Bocharov GA, Romanyukha AA (1994) Mathematical model of antiviral

immune response. III. Influenza A virus infection. J Theor Biol 167: 323–360.

26. Weibel ER (1979) Morphometry of the human lung: the state of the art after two

decades. Bull Eur Physiopathol Respir 15: 999–1013.

27. Plopper CG, Heidsiek JG, Weir AJ, George JA, Hyde DM (1989)

Tracheobronchial epithelium in the adult rhesus monkey: a quantitative

histochemical and ultrastructural study. Am J Anat 184: 31–40.

28. Crapo JD, Barry BE, Gehr P, Bachofen M, Weibel ER (1982) Cell number and

cell characteristics of the normal human lung. Am Rev Respir Dis 126: 332–337.

29. Stahlhofen W, Rudolf G, James AC (1989) Intercomparison of experimental

regional aerosol deposition data. J Aerosol Med 2: 285–308.

30. Moller W, Haussinger K, Winkler-Heil R, Stahlhofen W, Meyer T, et al. (2004)

Mucociliary and long-term particle clearance in the airways of healthy

nonsmoker subjects. J Appl Physiol 97: 2200–2206.

31. Wanner A, Salathe M, O’Riordan TG (1996) Mucociliary clearance in the

airways. Am J Respir Crit Care Med 154: 1868–1902.

32. Falk R, Philipson K, Svartengren M, Jarvis N, Bailey M, et al. (1997) Clearance

of particles from small ciliated airways. Exp Lung Res 23: 495–515.

33. Green GM (1973) Alveolobronchiolar transport mechanisms. Arch Intern Med

131: 109–114.

34. Couceiro JN, Paulson JC, Baum LG (1993) Influenza virus strains selectively

recognize sialyloligosaccharides on human respiratory epithelium; the role of the

host cell in selection of hemagglutinin receptor specificity. Virus Res 29: 155–

165.

35. Reynolds HY (1991) Immunologic system in the respiratory tract. Physiol Rev

71: 1117–1133.

36. Renegar KB, Small PA Jr., Boykins LG, Wright PF (2004) Role of IgA versus

IgG in the control of influenza viral infection in the murine respiratory tract.

J Immunol 173: 1978–1986.

37. Ito R, Ozaki YA, Yoshikawa T, Hasegawa H, Sato Y, et al. (2003) Roles of anti-

hemagglutinin IgA and IgG antibodies in different sites of the respiratory tract of

vaccinated mice in preventing lethal influenza pneumonia. Vaccine 21: 2362–

2371.

38. Sim GK (1995) Intraepithelial lymphocytes and the immune system. Adv

Immunol 58: 297–343.

39. Teijaro JR, Turner D, Pham Q, Wherry EJ, Lefrancois L, et al. (2011) Cutting

Edge: Tissue-Retentive Lung Memory CD4 T Cells Mediate Optimal

Protection to Respiratory Virus Infection. J Immunol.

40. Baccam P, Beauchemin C, Macken CA, Hayden FG, Perelson AS (2006)

Kinetics of influenza A virus infection in humans. J Virol 80: 7590–7599.

41. Beauchemin C, Samuel J, Tuszynski J (2005) A simple cellular automaton model

for influenza A viral infections. J Theor Biol 232: 223–234.

42. Hancioglu B, Swigon D, Clermont G (2007) A dynamical model of human

immune response to influenza A virus infection. J Theor Biol 246: 70–86.

43. Handel A, Longini IM, Jr., Antia R (2010) Towards a quantitative

understanding of the within-host dynamics of influenza A infections. J R Soc

Interface 7: 35–47.

Tissue Tropism and Fitness of Influenza Virus

PLOS ONE | www.plosone.org 13 August 2012 | Volume 7 | Issue 8 | e43115



44. Dobrovolny HM, Baron MJ, Gieschke R, Davies BE, Jumbe NL, et al. (2010)

Exploring cell tropism as a possible contributor to influenza infection severity.

PLoS One 5: e13811.

45. Canini L, Carrat F (2011) Population Modeling of Influenza A/H1N1 Virus

Kinetics and Symptom Dynamics. J Virol 85: 2764–2770.

46. Beauchemin CA, Handel A (2011) A review of mathematical models of influenza

A infections within a host or cell culture: lessons learned and challenges ahead.

BMC Public Health 11 Suppl 1: S7.

47. Gambaryan A, Yamnikova S, Lvov D, Tuzikov A, Chinarev A, et al. (2005)

Receptor specificity of influenza viruses from birds and mammals: new data on

involvement of the inner fragments of the carbohydrate chain. Virology 334:

276–283.

48. Stevens J, Blixt O, Glaser L, Taubenberger JK, Palese P, et al. (2006) Glycan

microarray analysis of the hemagglutinins from modern and pandemic influenza

viruses reveals different receptor specificities. J Mol Biol 355: 1143–1155.

49. Chandrasekaran A, Srinivasan A, Raman R, Viswanathan K, Raguram S, et al.

(2008) Glycan topology determines human adaptation of avian H5N1 virus

hemagglutinin. Nat Biotechnol 26: 107–113.

50. Carrat F, Vergu E, Ferguson NM, Lemaitre M, Cauchemez S, et al. (2008)

Time lines of infection and disease in human influenza: a review of volunteer

challenge studies. Am J Epidemiol 167: 775–785.

51. Hayden FG, Fritz R, Lobo MC, Alvord W, Strober W, et al. (1998) Local and

systemic cytokine responses during experimental human influenza A virus

infection. Relation to symptom formation and host defense. J Clin Invest 101:

643–649.

52. Brown GC, O’Leary TP (1973) Fluorescent antibodies to influenza virus in

various immunoglobulin fractions of serum after natural infection or vaccination.

J Immunol 110: 889–896.

53. Doherty PC, Christensen JP (2000) Accessing complexity: the dynamics of virus-

specific T cell responses. Annu Rev Immunol 18: 561–592.

54. Doherty PC, Turner SJ, Webby RG, Thomas PG (2006) Influenza and the

challenge for immunology. Nat Immunol 7: 449–455.

55. R_Development_Core_Team (2009) R: a language and environment for

statistical computing. Vienna: R Foundation for Statistical Computing.

56. Blower SM, Dowlatabadi H (1994) Sensitivity and Uncertainty Analysis of

Complex Models of Disease Transmission: An HIV Model, as an Example.

International Statistical Review/Revue Internationale de Statistique 62: 229–

243 CR.

57. Elveback LR, Fox JP, Ackerman E, Langworthy A, Boyd M, et al. (1976) An

influenza simulation model for immunization studies. Am J Epidemiol 103: 152–

165.

58. Mills CE, Robins JM, Lipsitch M (2004) Transmissibility of 1918 pandemic

influenza. Nature 432: 904–906.

59. Jackson C, Vynnycky E, Mangtani P (2010) Estimates of the transmissibility of

the 1968 (Hong Kong) influenza pandemic: evidence of increased transmissi-

bility between successive waves. Am J Epidemiol 171: 465–478.

60. WHO (2011) Cumulative Number of Confirmed Human Cases of Avian

Influenza A/(H5N1) Reported to WHO. 15 April 2010 ed.

61. Alizon S, Hurford A, Mideo N, Van Baalen M (2009) Virulence evolution and

the trade-off hypothesis: history, current state of affairs and the future. J Evol

Biol 22: 245–259.

62. Memoli MJ, Jagger BW, Dugan VG, Qi L, Jackson JP, et al. (2009) Recent

human influenza A/H3N2 virus evolution driven by novel selection factors in

addition to antigenic drift. J Infect Dis 200: 1232–1241.

63. Smith H, Sweet C (1988) Lessons for human influenza from pathogenicity

studies with ferrets. Rev Infect Dis 10: 56–75.

64. van den Brand JM, Stittelaar KJ, van Amerongen G, Rimmelzwaan GF, Simon

J, et al. (2010) Severity of pneumonia due to new H1N1 influenza virus in ferrets

is intermediate between that due to seasonal H1N1 virus and highly pathogenic

avian influenza H5N1 virus. J Infect Dis 201: 993–999.

65. Chowell G, Miller MA, Viboud C (2008) Seasonal influenza in the United

States, France, and Australia: transmission and prospects for control. Epidemiol
Infect 136: 852–864.

66. Childs RA, Palma AS, Wharton S, Matrosovich T, Liu Y, et al. (2009) Receptor-

binding specificity of pandemic influenza A (H1N1) 2009 virus determined by
carbohydrate microarray. Nat Biotechnol 27: 797–799.

67. Taubenberger JK, Morens DM (2006) Influenza revisited. Emerg Infect Dis 12:
1–2.

68. Guarner J, Paddock CD, Shieh WJ, Packard MM, Patel M, et al. (2006)

Histopathologic and immunohistochemical features of fatal influenza virus
infection in children during the 2003–2004 season. Clin Infect Dis 43: 132–140.

69. Guarner J, Shieh WJ, Dawson J, Subbarao K, Shaw M, et al. (2000)
Immunohistochemical and in situ hybridization studies of influenza A virus

infection in human lungs. Am J Clin Pathol 114: 227–233.
70. Munster VJ, de Wit E, van den Brand JM, Herfst S, Schrauwen EJ, et al. (2009)

Pathogenesis and transmission of swine-origin 2009 A(H1N1) influenza virus in

ferrets. Science 325: 481–483.
71. Smith DJ, Lapedes AS, de Jong JC, Bestebroer TM, Rimmelzwaan GF, et al.

(2004) Mapping the antigenic and genetic evolution of influenza virus. Science
305: 371–376.

72. Park AW, Daly JM, Lewis NS, Smith DJ, Wood JL, et al. (2009) Quantifying the

impact of immune escape on transmission dynamics of influenza. Science 326:
726–728.

73. Koelle K, Cobey S, Grenfell B, Pascual M (2006) Epochal evolution shapes the
phylodynamics of interpandemic influenza A (H3N2) in humans. Science 314:

1898–1903.
74. Viboud C, Boelle PY, Cauchemez S, Lavenu A, Valleron AJ, et al. (2004) Risk

factors of influenza transmission in households. Br J Gen Pract 54: 684–689.

75. Cox NJ, Subbarao K (2000) Global epidemiology of influenza: past and present.
Annu Rev Med 51: 407–421.

76. Cauchemez S, Valleron AJ, Boelle PY, Flahault A, Ferguson NM (2008)
Estimating the impact of school closure on influenza transmission from Sentinel

data. Nature 452: 750–754.

77. Mossong J, Hens N, Jit M, Beutels P, Auranen K, et al. (2008) Social contacts
and mixing patterns relevant to the spread of infectious diseases. PLoS Med 5:

e74.
78. Bodewes R, de Mutsert G, van der Klis FR, Ventresca M, Wilks S, et al. (2011)

Prevalence of antibodies against seasonal influenza A and B viruses in children in
Netherlands. Clin Vaccine Immunol 18: 469–476.

79. Khurana S, Verma N, Talaat KR, Karron RA, Golding H (2011) Immune

Response Following H1N1pdm09 Vaccination: Differences in Antibody
Repertoire and Avidity in Young Adults and Elderly Populations Stratified by

Age and Gender. J Infect Dis 205: 610–620.
80. Brydon EW, Smith H, Sweet C (2003) Influenza A virus-induced apoptosis in

bronchiolar epithelial (NCI-H292) cells limits pro-inflammatory cytokine release.

J Gen Virol 84: 2389–2400.
81. Beauchemin CA, McSharry JJ, Drusano GL, Nguyen JT, Went GT, et al. (2008)

Modeling amantadine treatment of influenza A virus in vitro. J Theor Biol 254:
439–451.

82. Shechter Y, Preciado-Patt L, Schreiber G, Fridkin M (2001) Prolonging the half-
life of human interferon-alpha 2 in circulation: Design, preparation, and analysis

of (2-sulfo-9-fluorenylmethoxycarbonyl)7- interferon-alpha 2. Proc Natl Acad

Sci U S A 98: 1212–1217.
83. Almeida AR, Rocha B, Freitas AA, Tanchot C (2005) Homeostasis of T cell

numbers: from thymus production to peripheral compartmentalization and the
indexation of regulatory T cells. Semin Immunol 17: 239–249.

84. Barth WF, Wochner RD, Waldmann TA, Fahey JL (1964) Metabolism of

Human Gamma Macroglobulins. J Clin Invest 43: 1036–1048.
85. Morell A, Skvaril F, Noseda G, Barandun S (1973) Metabolic properties of

human IgA subclasses. Clin Exp Immunol 13: 521–528.
86. Morell A, Terry WD, Waldmann TA (1970) Metabolic properties of IgG

subclasses in man. J Clin Invest 49: 673–680.

Tissue Tropism and Fitness of Influenza Virus

PLOS ONE | www.plosone.org 14 August 2012 | Volume 7 | Issue 8 | e43115


