Mapping parameter spaces of biological switches
Author(s): Diegmiller, Rocky; Zhang, Lun; Gameiro, Marcio; Barr, Justinn; Imran Alsous, Jasmin; et al
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1vx06338
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Diegmiller, Rocky | - |
dc.contributor.author | Zhang, Lun | - |
dc.contributor.author | Gameiro, Marcio | - |
dc.contributor.author | Barr, Justinn | - |
dc.contributor.author | Imran Alsous, Jasmin | - |
dc.contributor.author | Schedl, Paul D | - |
dc.contributor.author | Shvartsman, Stanislav Y | - |
dc.contributor.author | Mischaikow, Konstantin | - |
dc.date.accessioned | 2023-12-18T20:21:22Z | - |
dc.date.available | 2023-12-18T20:21:22Z | - |
dc.date.issued | 2021-02-08 | en_US |
dc.identifier.citation | Diegmiller R, Zhang L, Gameiro M, Barr J, Imran Alsous J, Schedl P, et al. (2021) Mapping parameter spaces of biological switches. PLoS Comput Biol 17(2): e1008711. https://doi.org/10.1371/journal.pcbi.1008711 | en_US |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr1vx06338 | - |
dc.description.abstract | Since the seminal 1961 paper of Monod and Jacob, mathematical models of biomolecular circuits have guided our understanding of cell regulation. Model-based exploration of the functional capabilities of any given circuit requires systematic mapping of multidimensional spaces of model parameters. Despite significant advances in computational dynamical systems approaches, this analysis remains a nontrivial task. Here, we use a nonlinear system of ordinary differential equations to model oocyte selection in Drosophila, a robust symmetry-breaking event that relies on autoregulatory localization of oocyte-specification factors. By applying an algorithmic approach that implements symbolic computation and topological methods, we enumerate all phase portraits of stable steady states in the limit when nonlinear regulatory interactions become discrete switches. Leveraging this initial exact partitioning and further using numerical exploration, we locate parameter regions that are dense in purely asymmetric steady states when the nonlinearities are not infinitely sharp, enabling systematic identification of parameter regions that correspond to robust oocyte selection. This framework can be generalized to map the full parameter spaces in a broad class of models involving biological switches. | en_US |
dc.language | en | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | PLOS Computational Biology | en_US |
dc.rights | Final published version. This is an open access article. | en_US |
dc.title | Mapping parameter spaces of biological switches | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.1371/journal.pcbi.1008711 | - |
dc.identifier.eissn | 1553-7358 | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Mapping parameter spaces of biological switches.pdf | 1.59 MB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.