Skip to main content

Harnessing the Power of Many: Extensible Toolkit for Scalable Ensemble Applications

Author(s): Balasubramanian, Vivek; Turilli, Matteo; Hu, Weiming; Lefebvre, Matthieu; Lei, Wenjie; et al

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1vh5cj0r
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBalasubramanian, Vivek-
dc.contributor.authorTurilli, Matteo-
dc.contributor.authorHu, Weiming-
dc.contributor.authorLefebvre, Matthieu-
dc.contributor.authorLei, Wenjie-
dc.contributor.authorModrak, Ryan-
dc.contributor.authorCervone, Guido-
dc.contributor.authorTromp, Jeroen-
dc.contributor.authorJha, Shantenu-
dc.date.accessioned2023-12-14T17:45:47Z-
dc.date.available2023-12-14T17:45:47Z-
dc.date.issued2018-08-06en_US
dc.identifier.citationBalasubramanian, Vivek, Matteo Turilli, Weiming Hu, Matthieu Lefebvre, Wenjie Lei, Ryan Modrak, Guido Cervone, Jeroen Tromp, and Shantenu Jha. "Harnessing the power of many: Extensible toolkit for scalable ensemble applications." In 2018 IEEE International Parallel and Distributed Processing Symposium (IPDPS), IEEE (2018): 536-545. doi:10.1109/IPDPS.2018.00063.en_US
dc.identifier.urihttps://arxiv.org/pdf/1710.08491.pdf-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1vh5cj0r-
dc.description.abstractMany scientific problems require multiple distinct computational tasks to be executed in order to achieve a desired solution. We introduce the Ensemble Toolkit (EnTK) to address the challenges of scale, diversity and reliability they pose. We describe the design and implementation of EnTK, characterize its performance and integrate it with two exemplar use cases: seismic inversion and adaptive analog ensembles. We perform nine experiments, characterizing EnTK overheads, strong and weak scalability, and the performance of the two use case imple-mentations, at scale and on production infrastructures. We show how EnTK meets the following general requirements: (i) imple-menting dedicated abstractions to support the description and execution of ensemble applications; (ii) support for execution on heterogeneous computing infrastructures; (iii) efficient scalability up to O(10 4 ) tasks; and (iv) task-level fault tolerance. We discuss novel computational capabilities that EnTK enables and the scientific advantages arising thereof. We propose EnTK as an important addition to the suite of tools in support of production scientific computing.en_US
dc.format.extent536 - 545en_US
dc.language.isoen_USen_US
dc.relation.ispartof2018 IEEE International Parallel and Distributed Processing Symposium (IPDPS)en_US
dc.rightsAuthor's manuscripten_US
dc.titleHarnessing the Power of Many: Extensible Toolkit for Scalable Ensemble Applicationsen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1109/IPDPS.2018.00063-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/conference-proceedingen_US

Files in This Item:
File Description SizeFormat 
Harnessing_power_many_Extensible_toolkit_scalable_ensemble_applications.pdf2.43 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.