Skip to main content

Hyperuniform disordered waveguides and devices for near infrared silicon photonics

Author(s): Milošević, Milan M; Man, Weining; Nahal, Geev; Steinhardt, Paul J; Torquato, Salvatore; et al

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1td9n836
Abstract: We introduce a hyperuniform-disordered platform for the realization of near-infrared photonic devices on a silicon-on-insulator platform, demonstrating the functionality of these structures in a flexible silicon photonics integrated circuit platform unconstrained by crystalline symmetries. The designs proposed advantageously leverage the large, complete, and isotropic photonic band gaps provided by hyperuniform disordered structures. An integrated design for a compact, sub-volt, sub-fJ/bit, hyperuniform-clad, electrically controlled resonant optical modulator suitable for fabrication in the silicon photonics ecosystem is presented along with simulation results. We also report results for passive device elements, including waveguides and resonators, which are seamlessly integrated with conventional silicon-on-insulator strip waveguides and vertical couplers. We show that the hyperuniform-disordered platform enables improved compactness, enhanced energy efficiency, and better temperature stability compared to the silicon photonics devices based on rib and strip waveguides.
Publication Date: 30-Dec-2019
Electronic Publication Date: 30-Dec-2019
Citation: Milošević, Milan M, Man, Weining, Nahal, Geev, Steinhardt, Paul J, Torquato, Salvatore, Chaikin, Paul M, Amoah, Timothy, Yu, Bowen, Mullen, Ruth Ann, Florescu, Marian. (Hyperuniform disordered waveguides and devices for near infrared silicon photonics. Scientific Reports, 9 (1), 10.1038/s41598-019-56692-5
DOI: doi:10.1038/s41598-019-56692-5
EISSN: 2045-2322
Language: en
Type of Material: Journal Article
Journal/Proceeding Title: Scientific Reports
Version: Final published version. This is an open access article.



Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.