Modeling Multiphase Flow Within and Around Deformable Porous Materials: A Darcy‐Brinkman‐Biot Approach
Author(s): Carrillo, Francisco J; Bourg, Ian C
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1t14tp72
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Carrillo, Francisco J | - |
dc.contributor.author | Bourg, Ian C | - |
dc.date.accessioned | 2024-01-08T02:29:23Z | - |
dc.date.available | 2024-01-08T02:29:23Z | - |
dc.date.issued | 2020-12-30 | en_US |
dc.identifier.citation | Carrillo, Francisco J, Bourg, Ian C. (2021). Modeling Multiphase Flow Within and Around Deformable Porous Materials: A Darcy‐Brinkman‐Biot Approach. Water Resources Research, 57 (2), 10.1029/2020wr028734 | en_US |
dc.identifier.issn | 0043-1397 | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr1t14tp72 | - |
dc.description.abstract | We present a new computational fluid dynamics approach for simulating two-phase flow in hybrid systems containing solid-free regions and deformable porous matrices. Our approach is based on the derivation of a unique set of volume-averaged partial differential equations that asymptotically approach the Navier-Stokes Volume-of-Fluid equations in solid-free regions and multiphase Biot Theory in porous regions. The resulting equations extend our recently developed Darcy-Brinkman-Biot framework to multiphase flow. Through careful consideration of interfacial dynamics (relative permeability and capillary effects) and extensive benchmarking, we show that the resulting model accurately captures the strong two-way coupling that is often exhibited between multiple fluids and deformable porous media. Thus, it can be used to represent flow-induced material deformation (swelling, compression) and failure (cracking, fracturing). The model's open-source numerical implementation, hybridBiotInterFoam, effectively marks the extension of computational fluid mechanics into modeling multiscale multiphase flow in deformable porous systems. The versatility of the solver is illustrated through applications related to material failure in poroelastic coastal barriers and surface deformation due to fluid injection in porovisco-plastic systems. | en_US |
dc.language | en | en_US |
dc.relation.ispartof | Water Resources Research | en_US |
dc.rights | Final published version. This is an open access article. | en_US |
dc.title | Modeling Multiphase Flow Within and Around Deformable Porous Materials: A Darcy‐Brinkman‐Biot Approach | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.1029/2020wr028734 | - |
dc.identifier.eissn | 1944-7973 | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
multiphaseflow.pdf | 5.1 MB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.