Skip to main content

Parametrized post-Einsteinian framework for gravitational wave bursts

Author(s): Loutrel, Nicholas; Yunes, Nicolas; Pretorius, Frans

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1t089
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLoutrel, Nicholas-
dc.contributor.authorYunes, Nicolas-
dc.contributor.authorPretorius, Frans-
dc.date.accessioned2018-07-20T15:07:24Z-
dc.date.available2018-07-20T15:07:24Z-
dc.date.issued2014-11-15en_US
dc.identifier.citationLoutrel, Nicholas, Yunes, Nicolas, Pretorius, Frans. (2014). Parametrized post-Einsteinian framework for gravitational wave bursts. PHYSICAL REVIEW D, 90 (10.1103/PhysRevD.90.104010en_US
dc.identifier.issn1550-7998-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1t089-
dc.description.abstractThe population of stellar-mass, compact object binaries that merge with non-negligible eccentricity may be large enough to motivate searches with ground-based gravitational wave detectors. Such events could be exceptional laboratories to test General Relativity in the dynamical, strong-field regime, as a larger fraction of the energy is emitted at high velocities, compared to quasicircular inspirals. A serious obstacle here, however, is the challenge of computing theoretical waveforms for eccentric systems with the requisite accuracy for use in a matched-filter search. The corresponding waveforms are more a sequence of concentrated bursts of energy emitted near periapse than a continuous waveform. Based on this, an alternative approach, stacking excess power over the set of time-frequency tiles coincident with the bursts, was recently suggested as a more practical (though suboptimal) detection strategy. The leading-order “observable” that would be inferred from such a detection would be a sequence of discrete numbers characterizing the position and size of each time-frequency tile. In General Relativity, this (possibly large) sequence of numbers is uniquely determined by the small set of parameters describing the binary at formation. In this paper, following the spirit of the parametrized post-Einsteinian framework developed for quasicircular inspiral, we propose a simple, parametrized deformation of the baseline general relativistic burst algorithm for eccentric inspiral events that would allow for model-independent tests of Einstein’s theory in this high-velocity, strong-field regime.en_US
dc.language.isoen_USen_US
dc.relation.ispartofPHYSICAL REVIEW Den_US
dc.rightsFinal published version. Article is made available in OAR by the publisher's permission or policy.en_US
dc.titleParametrized post-Einsteinian framework for gravitational wave burstsen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1103/PhysRevD.90.104010-
dc.date.eissued2014-11-11en_US
dc.identifier.eissn1550-2368-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
PhysRevD.90.104010.pdf399.03 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.