Skip to main content

Managing heterogeneity in the study of neural oscillator dynamics

Author(s): Laing, CR; Zou, Yu; Smith, B; Kevrekidis, Yannis G.

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1qs13
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLaing, CR-
dc.contributor.authorZou, Yu-
dc.contributor.authorSmith, B-
dc.contributor.authorKevrekidis, Yannis G.-
dc.date.accessioned2021-10-08T19:58:37Z-
dc.date.available2021-10-08T19:58:37Z-
dc.date.issued2012-01-01en_US
dc.identifier.citationLaing, CR, Zou, Y, Smith, B, Kevrekidis, YG. (2012). Managing heterogeneity in the study of neural oscillator dynamics. Journal of Mathematical Neuroscience, 2 (1), 10.1186/2190-8567-2-5en_US
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1qs13-
dc.description.abstractWe consider a coupled, heterogeneous population of relaxation oscillators used to model rhythmic oscillations in the pre-Bötzinger complex. By choosing specific values of the parameter used to describe the heterogeneity, sampled from the probability distribution of the values of that parameter, we show how the effects of heterogeneity can be studied in a computationally efficient manner. When more than one parameter is heterogeneous, full or sparse tensor product grids are used to select appropriate parameter values. The method allows us to effectively reduce the dimensionality of the model, and it provides a means for systematically investigating the effects of heterogeneity in coupled systems, linking ideas from uncertainty quantification to those for the study of network dynamics. © 2012 Laing et al.en_US
dc.format.extent1 - 22en_US
dc.language.isoen_USen_US
dc.relation.ispartofJournal of Mathematical Neuroscienceen_US
dc.rightsFinal published version. This is an open access article.en_US
dc.titleManaging heterogeneity in the study of neural oscillator dynamicsen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1186/2190-8567-2-5-
dc.identifier.eissn2190-8567-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
Managing_neural_oscillator_dynamics.pdf526.88 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.