Skip to main content

Scaling probabilistic models of genetic variation to millions of humans

Author(s): Gopalan, Prem; Hao, Wei; Blei, David M; Storey, John D

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1pn9j
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGopalan, Prem-
dc.contributor.authorHao, Wei-
dc.contributor.authorBlei, David M-
dc.contributor.authorStorey, John D-
dc.date.accessioned2021-10-08T19:46:18Z-
dc.date.available2021-10-08T19:46:18Z-
dc.date.issued2016-12en_US
dc.identifier.citationGopalan, Prem, Hao, Wei, Blei, David M, Storey, John D. (2016). Scaling probabilistic models of genetic variation to millions of humans. Nature Genetics, 48 (12), 1587 - 1590. doi:10.1038/ng.3710en_US
dc.identifier.issn1061-4036-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1pn9j-
dc.description.abstractA major goal of population genetics is to quantitatively understand variation of genetic polymorphisms among individuals. The aggregated number of genotyped humans is currently on the order millions of individuals, and existing methods do not scale to data of this size. To solve this problem we developed TeraStructure, an algorithm to fit Bayesian models of genetic variation in structured human populations on tera-sample-sized data sets (1012 observed genotypes, e.g., 1M individuals at 1M SNPs). TeraStructure is a scalable approach to Bayesian inference in which subsamples of markers are used to update an estimate of the latent population structure between samples. We demonstrate that TeraStructure performs as well as existing methods on current globally sampled data, and we show using simulations that TeraStructure continues to be accurate and is the only method that can scale to tera-sample-sizes.en_US
dc.format.extent1587 - 1590en_US
dc.language.isoen_USen_US
dc.relation.ispartofNature Geneticsen_US
dc.rightsAuthor's manuscripten_US
dc.titleScaling probabilistic models of genetic variation to millions of humansen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1038/ng.3710-
dc.date.eissued2016-11-07en_US
dc.identifier.eissn1546-1718-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
Scaling_probabilistic_models_millions_humans.pdf2.04 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.