Scaling probabilistic models of genetic variation to millions of humans
Author(s): Gopalan, Prem; Hao, Wei; Blei, David M; Storey, John D
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1pn9j
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Gopalan, Prem | - |
dc.contributor.author | Hao, Wei | - |
dc.contributor.author | Blei, David M | - |
dc.contributor.author | Storey, John D | - |
dc.date.accessioned | 2021-10-08T19:46:18Z | - |
dc.date.available | 2021-10-08T19:46:18Z | - |
dc.date.issued | 2016-12 | en_US |
dc.identifier.citation | Gopalan, Prem, Hao, Wei, Blei, David M, Storey, John D. (2016). Scaling probabilistic models of genetic variation to millions of humans. Nature Genetics, 48 (12), 1587 - 1590. doi:10.1038/ng.3710 | en_US |
dc.identifier.issn | 1061-4036 | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr1pn9j | - |
dc.description.abstract | A major goal of population genetics is to quantitatively understand variation of genetic polymorphisms among individuals. The aggregated number of genotyped humans is currently on the order millions of individuals, and existing methods do not scale to data of this size. To solve this problem we developed TeraStructure, an algorithm to fit Bayesian models of genetic variation in structured human populations on tera-sample-sized data sets (1012 observed genotypes, e.g., 1M individuals at 1M SNPs). TeraStructure is a scalable approach to Bayesian inference in which subsamples of markers are used to update an estimate of the latent population structure between samples. We demonstrate that TeraStructure performs as well as existing methods on current globally sampled data, and we show using simulations that TeraStructure continues to be accurate and is the only method that can scale to tera-sample-sizes. | en_US |
dc.format.extent | 1587 - 1590 | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | Nature Genetics | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | Scaling probabilistic models of genetic variation to millions of humans | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.1038/ng.3710 | - |
dc.date.eissued | 2016-11-07 | en_US |
dc.identifier.eissn | 1546-1718 | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Scaling_probabilistic_models_millions_humans.pdf | 2.04 MB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.