Skip to main content

Molecular Dynamics Simulations of Water Structure and Diffusion in a 1-nm-diameter Silica Nanopore as a Function of Surface Charge and Alkali Metal Counterion Identity

Author(s): Collin, Marie; Gin, Stéphane; Dazas, Baptiste; Mahadevan, Thiruvillamalai; Du, Jincheng; et al

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1pn8xf6m
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCollin, Marie-
dc.contributor.authorGin, Stéphane-
dc.contributor.authorDazas, Baptiste-
dc.contributor.authorMahadevan, Thiruvillamalai-
dc.contributor.authorDu, Jincheng-
dc.contributor.authorBourg, Ian C.-
dc.date.accessioned2024-01-20T00:32:23Z-
dc.date.available2024-01-20T00:32:23Z-
dc.date.issued2018-08-01en_US
dc.identifier.citationCollin, Marie, Gin, Stéphane, Dazas, Baptiste, Mahadevan, Thiruvillamalai, Du, Jincheng, Bourg, Ian C. (2018). Molecular Dynamics Simulations of Water Structure and Diffusion in a 1 nm Diameter Silica Nanopore as a Function of Surface Charge and Alkali Metal Counterion Identity. The Journal of Physical Chemistry C, 122 (31), 17764 - 17776. doi:10.1021/acs.jpcc.8b03902en_US
dc.identifier.issn1932-7447-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1pn8xf6m-
dc.description.abstractWater confined in nanopores—particularly in pores narrower than 2 nm—displays distinct physicochemical properties that remain incompletely examined despite their importance in nanofluidics, molecular biology, geology, and materials sciences. Here, we use molecular dynamics simulations to investigate the coordination structure and mobility of water and alkali metals (Li, Na, K, Cs) inside a 1-nm-diameter cylindrical silica nanopore as a function of surface charge density, a model system particularly relevant to the alteration kinetics of silicate glasses and minerals in geologic formations. We find that the presence of negative surface charge and adsorbed counterions within the pore strongly impacts water structure and dynamics. In particular, it significantly orients water O-H bonds towards the surface and slows water diffusion by almost one order of magnitude. Ion crowding in the charged nanopore enhances the tendency of counterions to coordinate closely with the silica surface, which moderates the impact of ions on water dynamics. Co-ions are strongly excluded from the nanopore at all surface charges, suggesting that 1-nm-diameter cylindrical silica nanopores likely exhibit nearly ideal semi-permeable membrane transport properties.en_US
dc.languageenen_US
dc.language.isoen_USen_US
dc.relation.ispartofThe Journal of Physical Chemistry Cen_US
dc.rightsAuthor's manuscripten_US
dc.titleMolecular Dynamics Simulations of Water Structure and Diffusion in a 1-nm-diameter Silica Nanopore as a Function of Surface Charge and Alkali Metal Counterion Identityen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1021/acs.jpcc.8b03902-
dc.identifier.eissn1932-7455-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
waterstructure.pdf5.41 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.