Charge transport across metal/molecular (alkyl) monolayer-Si junctions is dominated by the LUMO level
Author(s): Yaffe, O; Qi, Y; Scheres, L; Puniredd, SR; Segev, L; et al
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1nz34
Abstract: | We compare the charge transport characteristics of heavy-doped p ++- and n ++-Si-alkyl chain/Hg junctions. Based on negative differential resistance in an analogous semiconductor-inorganic insulator/metal junction we suggest that for both p ++- and n ++-type junctions, the energy difference between the Fermi level and lowest unoccupied molecular orbital (LUMO), i.e., electron tunneling, controls charge transport. This conclusion is supported by results from photoelectron spectroscopy (ultraviolet photoemission spectroscopy, inverse photoelectron spectroscopy, and x-ray photoemission spectroscopy) for the molecule-Si band alignment at equilibrium, which clearly indicate that the energy difference between the Fermi level and the LUMO is much smaller than that between the Fermi level and the highest occupied molecular orbital (HOMO). Furthermore, the experimentally determined Fermi level - LUMO energy difference, agrees with the non-resonant tunneling barrier height, deduced from the exponential length attenuation of the current. |
Publication Date: | 20-Jan-2012 |
Electronic Publication Date: | 20-Jan-2012 |
Citation: | Yaffe, O, Qi, Y, Scheres, L, Puniredd, SR, Segev, L, Ely, T, Haick, H, Zuilhof, H, Vilan, A, Kronik, L, Kahn, A, Cahen, D. (2012). Charge transport across metal/molecular (alkyl) monolayer-Si junctions is dominated by the LUMO level. Physical Review B - Condensed Matter and Materials Physics, 85 (10.1103/PhysRevB.85.045433 |
DOI: | doi:10.1103/PhysRevB.85.045433 |
Type of Material: | Journal Article |
Journal/Proceeding Title: | Physical Review B - Condensed Matter and Materials Physics |
Version: | Author's manuscript |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.