Skip to main content

Online gradient boosting

Author(s): Beygelzimer, A; Hazan, Elad; Kale, S; Luo, H

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1nm3b
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBeygelzimer, A-
dc.contributor.authorHazan, Elad-
dc.contributor.authorKale, S-
dc.contributor.authorLuo, H-
dc.date.accessioned2018-07-20T15:10:30Z-
dc.date.available2018-07-20T15:10:30Z-
dc.date.issued2015en_US
dc.identifier.citationBeygelzimer, A, Hazan, E, Kale, S, Luo, H. (2015). Online gradient boosting. 2015-January (2458 - 2466en_US
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1nm3b-
dc.description.abstractWe extend the theory of boosting for regression problems to the online learning setting. Generalizing from the batch setting for boosting, the notion of a weak learning algorithm is modeled as an online learning algorithm with linear loss functions that competes with a base class of regression functions, while a strong learning algorithm is an online learning algorithm with smooth convex loss functions that competes with a larger class of regression functions. Our main result is an online gradient boosting algorithm that converts a weak online learning algorithm into a strong one where the larger class of functions is the linear span of the base class. We also give a simpler boosting algorithm that converts a weak online learning algorithm into a strong one where the larger class of functions is the convex hull of the base class, and prove its optimality.en_US
dc.format.extent2458 - 2466en_US
dc.language.isoen_USen_US
dc.relation.ispartofAdvances in Neural Information Processing Systemsen_US
dc.rightsAuthor's manuscripten_US
dc.titleOnline gradient boostingen_US
dc.typeConference Articleen_US
dc.date.eissued2015en_US
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/conference-proceedingen_US

Files in This Item:
File Description SizeFormat 
Online gradient boosting.pdf232.26 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.