Skip to main content

EPROF: An energy/performance/reliability optimization framework for streaming applications

Author(s): Yetim, Yavuz; Malik, Sharad; Martonosi, Margaret

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1n824
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYetim, Yavuz-
dc.contributor.authorMalik, Sharad-
dc.contributor.authorMartonosi, Margaret-
dc.date.accessioned2021-10-08T19:45:23Z-
dc.date.available2021-10-08T19:45:23Z-
dc.date.issued2012en_US
dc.identifier.citationYetim, Yavuz, Sharad Malik, and Margaret Martonosi. "EPROF: An energy/performance/reliability optimization framework for streaming applications." 17th Asia and South Pacific Design Automation Conference (2012): pp. 769-774. doi:10.1109/ASPDAC.2012.6165058en_US
dc.identifier.issn2153-6961-
dc.identifier.urihttps://mrmgroup.cs.princeton.edu/papers/eprof.pdf-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1n824-
dc.description.abstractComputer systems face increasing challenges in simultaneously meeting an application's energy, performance, and reliability goals. While energy and performance tradeoffs have been studied through different dynamic voltage and frequency scaling (DVFS) policies and power management schemes, tradeoffs of energy and performance with reliability have not been studied for general purpose computing. This is particularly relevant for application domains such as multimedia, where some limited application error tolerance can be exploited to reduce energy [7]. In this paper, we present EPROF, an optimization framework based on Mixed-Integer Linear Programming (MILP) that selects possible schedules for running tasks on multiprocessors in order to minimize energy while meeting constraints on application performance and reliability. We consider parallel applications that express (on task graphs) the performance and reliability goals they need to achieve, and that run on chip multiprocessors made up of heterogeneous processor cores that offer different energy/performance/reliability tradeoffs. For the StreamIt benchmarks [16], EPROF can identify schedules that offer up to 34% energy reduction over a baseline method while achieving the targeted performance and reliability. More broadly, EPROF demonstrates how these three degrees of freedom (energy, performance and reliability) can be flexibly exploited as needed for different applications.en_US
dc.format.extent769 - 774en_US
dc.language.isoen_USen_US
dc.relation.ispartof17th Asia and South Pacific Design Automation Conferenceen_US
dc.rightsAuthor's manuscripten_US
dc.titleEPROF: An energy/performance/reliability optimization framework for streaming applicationsen_US
dc.typeConference Articleen_US
dc.identifier.doi10.1109/ASPDAC.2012.6165058-
dc.identifier.eissn2153-697X-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/conference-proceedingen_US

Files in This Item:
File Description SizeFormat 
OptimizationFrameworkStreamingApps.pdf128.42 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.