Skip to main content

Conformal thin-sandwich solver for generic initial data

Author(s): East, William E; Ramazanoglu, Fethi M; Pretorius, Frans

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1kt0p
Full metadata record
DC FieldValueLanguage
dc.contributor.authorEast, William E-
dc.contributor.authorRamazanoglu, Fethi M-
dc.contributor.authorPretorius, Frans-
dc.date.accessioned2018-07-20T15:06:40Z-
dc.date.available2018-07-20T15:06:40Z-
dc.date.issued2012-11-15en_US
dc.identifier.citationEast, William E, Ramazanoglu, Fethi M, Pretorius, Frans. (2012). Conformal thin-sandwich solver for generic initial data. PHYSICAL REVIEW D, 86 (10.1103/PhysRevD.86.104053en_US
dc.identifier.issn2470-0010-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1kt0p-
dc.description.abstractWe present a new scheme for constructing initial data for the Einstein field equations using the conformal thin-sandwich formulation that does not assume conformal flatness or approximate Killing vectors. This includes a method for determining free data based on superposition, as well as a way to handle black hole singularities without excision. We numerically solve the constraint equations using a multigrid algorithm with mesh refinement. We demonstrate the efficacy of the method with initial data solutions for several applications: a quasicircular binary black hole merger, a dynamical capture black hole-neutron star merger, and an ultrarelativistic collision.en_US
dc.language.isoen_USen_US
dc.relation.ispartofPHYSICAL REVIEW Den_US
dc.rightsFinal published version. Article is made available in OAR by the publisher's permission or policy.en_US
dc.titleConformal thin-sandwich solver for generic initial dataen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1103/PhysRevD.86.104053-
dc.date.eissued2012-11-27en_US
dc.identifier.eissn2470-0029-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
PhysRevD.86.104053.pdf511.78 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.