To refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1kj12
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ibragimov, Rustam | - |
dc.contributor.author | Mueller, Ulrich K | - |
dc.date.accessioned | 2019-12-04T19:07:56Z | - |
dc.date.available | 2019-12-04T19:07:56Z | - |
dc.date.issued | 2016-03-04 | en_US |
dc.identifier.citation | Ibragimov, Rustam, Mueller, Ulrich K. (2016). Inference with Few Heterogeneous Clusters. REVIEW OF ECONOMICS AND STATISTICS, 98 (1), 83 - 96. doi:10.1162/REST_a_00545 | en_US |
dc.identifier.issn | 0034-6535 | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr1kj12 | - |
dc.description.abstract | Suppose estimating a model on each of a small number of potentially heterogeneous clusters yields approximately independent, unbiased, and Gaussian parameter estimators. We make two contributions in this setup. First, we show how to compare a scalar parameter of interest between treatment and control units using a two-sample t-statistic, extending previous results for the one-sample t-statistic. Second, we develop a test for the appropriate level of clustering; it tests the null hypothesis that clustered standard errors from a much finer partition are correct. We illustrate the approach by revisiting empirical studies involving clustered, time series, and spatially correlated data. | en_US |
dc.format.extent | 83 - 96 | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | REVIEW OF ECONOMICS AND STATISTICS | en_US |
dc.rights | Final published version. Article is made available in OAR by the publisher's permission or policy. | en_US |
dc.title | Inference with Few Heterogeneous Clusters | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.1162/REST_a_00545 | - |
dc.identifier.eissn | 1530-9142 | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Restat 15.pdf | 644.26 kB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.