Skip to main content

Market-based estimation of stochastic volatility models

Author(s): Ait-Sahalia, Yacine; Amengual, Dante; Manresa, Elena

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1jn5h
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAit-Sahalia, Yacine-
dc.contributor.authorAmengual, Dante-
dc.contributor.authorManresa, Elena-
dc.date.accessioned2020-04-02T21:44:55Z-
dc.date.available2020-04-02T21:44:55Z-
dc.date.issued2015-08en_US
dc.identifier.citationAit-Sahalia, Yacine, Amengual, Dante, Manresa, Elena. (2015). Market-based estimation of stochastic volatility models. Journal of Econometrics, 187 (2), 418 - 435. doi:10.1016/j.jeconom.2015.02.028en_US
dc.identifier.issn0304-4076-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1jn5h-
dc.description.abstractWe propose a method for estimating stochastic volatility models by adapting the HJM approach to the case of volatility derivatives. We characterize restrictions that observed variance swap dynamics have to satisfy to prevent arbitrage opportunities. When the drift of variance swap rates are affine under the pricing measure, we obtain closed form expressions for those restrictions and formulae for forward variance curves. Using data on the S&P 500 index and variance swap rates on different time to maturities, we find that linear mean-reverting one factor models provide inaccurate representation of the dynamics of the variance swap rates while two-factor models significantly outperform the former both in and out of sample.en_US
dc.format.extent418 - 435en_US
dc.language.isoen_USen_US
dc.relation.ispartofJournal of Econometricsen_US
dc.rightsAuthor's manuscripten_US
dc.titleMarket-based estimation of stochastic volatility modelsen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1016/j.jeconom.2015.02.028-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
Market_Based_Estimation_Stochastic_2014.pdf662 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.