Loading [Contrib]/a11y/accessibility-menu.js
Skip to main content

Machine Learning, Markov Chain Monte Carlo, and Optimal Algorithms to Characterize the AdvACT Kilopixel Transition-Edge Sensor Arrays

Author(s): Salatino, Maria; Hubmayr, Johannes; Li, Yaqiong; Niemack, Michael D; Simon, Sara M; et al

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1j38kj01
Abstract: Next-generation focal planes comprising dozens of kilopixel transition-edge sensor (TES) arrays require new methods to rapidly screen candidate arrays, evaluate array non-idealities in the field, identify outlier devices for removal, and optimize the array performance in the field. We demonstrate robust methods to estimate TES parameters (critical temperatures and thermal conductivity parameters) and their uncertainties using a custom Markov Chain Monte Carlo (MCMC) algorithm. We also con- strain systematic effects in estimating the TES parameters from non-isothermal current-voltage curves (IVs) at approximately a ∼3% level. Additionally, for the first time, we have applied Machine Learning (ML) algorithms to tune detector arrays and optimize their performance.
Publication Date: 11-Apr-2019
Electronic Publication Date: 11-Apr-2019
Citation: Salatino, Maria, Hubmayr, Johannes, Li, Yaqiong, Niemack, Michael D, Simon, Sara M, Staggs, Suzanne T, Wollack, Edward J, Austermann, Jason, Beall, James A, Choi, Steve, Crowley, Kevin T, Duff, Shannon, Henderson, Shawn W, Hilton, Gene, Ho, S-PP. (2019). Machine Learning, Markov Chain Monte Carlo, and Optimal Algorithms to Characterize the AdvACT Kilopixel Transition-Edge Sensor Arrays. IEEE Transactions on Applied Superconductivity, 29 (5), 1 - 5. doi:10.1109/tasc.2019.2910542
DOI: doi:10.1109/tasc.2019.2910542
10.1109/TASC.2019.2910542
ISSN: 1051-8223
EISSN: 1558-2515
Keywords: Kilopixel focal planes, Machine Learning, Markov Chain Monte Carlo, Transition-Edge Sensor.
Pages: 1 - 5
Type of Material: Journal Article
Journal/Proceeding Title: IEEE Transactions on Applied Superconductivity
Version: Final published version. This is an open access article.



Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.