Skip to main content

Training Design and Channel Estimation in Uplink Cloud Radio Access Networks

Author(s): Xinqian, Xie; Mugen, Peng; Wenbo, Wang; Poor, H Vincent

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1j19b
Full metadata record
DC FieldValueLanguage
dc.contributor.authorXinqian, Xie-
dc.contributor.authorMugen, Peng-
dc.contributor.authorWenbo, Wang-
dc.contributor.authorPoor, H Vincent-
dc.date.accessioned2020-02-19T21:59:51Z-
dc.date.available2020-02-19T21:59:51Z-
dc.date.issued2016-08en_US
dc.identifier.citationXie, Xinqian, Mugen Peng, Wenbo Wang, and H. Vincent Poor. "Training design and channel estimation in uplink cloud radio access networks." IEEE Signal Processing Letters 22, no. 8 (2014): 1060-1064. doi:10.1109/LSP.2014.2380776en_US
dc.identifier.issn1070-9908-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1j19b-
dc.description.abstractTo decrease the training overhead and improve the channel estimation accuracy in uplink cloud radio access networks (C-RANs), a superimposed-segment training design is proposed. The core idea of the proposal is that each mobile station superimposes a periodic training sequence on the data signal, and each remote radio head prepends a separate pilot to the received signal before forwarding it to the centralized base band unit pool. Moreover, a complex-exponential basis-expansion-model based channel estimation algorithm to maximize a posteriori probability is developed. Simulation results show that the proposed channel estimation algorithm can effectively decrease the estimation mean square error and increase the average effective signal-to-noise ratio (AESNR) in C-RANs.en_US
dc.format.extent1060 - 1064en_US
dc.language.isoen_USen_US
dc.relation.ispartofIEEE Signal Processing Lettersen_US
dc.rightsAuthor's manuscripten_US
dc.titleTraining Design and Channel Estimation in Uplink Cloud Radio Access Networksen_US
dc.typeJournal Articleen_US
dc.identifier.doi10.1109/LSP.2014.2380776-
dc.identifier.eissn1558-2361-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
OA_TrainingDesignChannelEstimationUplinkCloudRadioAccessNetworks.pdf534.44 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.