Skip to main content

Primal and Dual Approximation Algorithms for Convex Vector Optimization Problems

Author(s): Löhne, Andreas; Rudloff, Birgit; Ulus, Firdevs

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1h20n
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLöhne, Andreas-
dc.contributor.authorRudloff, Birgit-
dc.contributor.authorUlus, Firdevs-
dc.date.accessioned2020-03-02T17:45:16Z-
dc.date.available2020-03-02T17:45:16Z-
dc.date.issued2014-12en_US
dc.identifier.citationLöhne, Andreas, Rudloff, Birgit, Ulus, Firdevs. (2014). Primal and Dual Approximation Algorithms for Convex Vector Optimization Problems. Journal of Global Optimization, 60 (4), 713 - 736. doi:10.1007/s10898-013-0136-0en_US
dc.identifier.issn0925-5001-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1h20n-
dc.description.abstractTwo approximation algorithms for solving convex vector optimization problems (CVOPs) are provided. Both algorithms solve the CVOP and its geometric dual problem simultaneously. The first algorithm is an extension of Benson’s outer approximation algorithm, and the second one is a dual variant of it. Both algorithms provide an inner as well as an outer approximation of the (upper and lower) images. Only one scalar convex program has to be solved in each iteration. We allow objective and constraint functions that are not necessarily differentiable, allow solid pointed polyhedral ordering cones, and relate the approximations to an appropriate e-solution concept. Numerical examples are provided.en_US
dc.format.extent713 - 736en_US
dc.language.isoen_USen_US
dc.relation.ispartofJournal of Global Optimizationen_US
dc.rightsAuthor's manuscripten_US
dc.titlePrimal and Dual Approximation Algorithms for Convex Vector Optimization Problemsen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1007/s10898-013-0136-0-
dc.date.eissued2014-01-12en_US
dc.identifier.eissn1573-2916-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
OA_PrimalDualApproximationAlgorithmsConvexVectorOptimizationProblems.pdf1.15 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.