Skip to main content

A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy

Author(s): Łuksza, Marta; Riaz, Nadeem; Makarov, Vladimir; Balachandran, Vinod P.; Hellmann, Matthew D.; et al

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1fv2h
Full metadata record
DC FieldValueLanguage
dc.contributor.authorŁuksza, Marta-
dc.contributor.authorRiaz, Nadeem-
dc.contributor.authorMakarov, Vladimir-
dc.contributor.authorBalachandran, Vinod P.-
dc.contributor.authorHellmann, Matthew D.-
dc.contributor.authorSolovyov, Alexander-
dc.contributor.authorRizvi, Naiyer A.-
dc.contributor.authorMerghoub, Taha-
dc.contributor.authorLevine, Arnold J.-
dc.contributor.authorChan, Timothy A.-
dc.contributor.authorWolchok, Jedd D.-
dc.contributor.authorGreenbaum, Benjamin D.-
dc.date.accessioned2020-02-25T22:36:13Z-
dc.date.available2020-02-25T22:36:13Z-
dc.date.issued2017-11-08en_US
dc.identifier.citationŁuksza, Marta, Riaz, Nadeem, Makarov, Vladimir, Balachandran, Vinod P, Hellmann, Matthew D, Solovyov, Alexander, Rizvi, Naiyer A, Merghoub, Taha, Levine, Arnold J, Chan, Timothy A, Wolchok, Jedd D, Greenbaum, Benjamin D. (2017). A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy. Nature, 551 (7681), 517 - 520. doi:10.1038/nature24473en_US
dc.identifier.issn0028-0836-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1fv2h-
dc.description.abstractCheckpoint blockade immunotherapies enable the host immune system to recognize and destroy tumour cells. Their clinical activity has been correlated with activated T-cell recognition of neoantigens, which are tumour-specific, mutated peptides presented on the surface of cancer cells. Here we present a fitness model for tumours based on immune interactions of neoantigens that predicts response to immunotherapy. Two main factors determine neoantigen fitness: the likelihood of neoantigen presentation by the major histocompatibility complex (MHC) and subsequent recognition by T cells. We estimate these components using the relative MHC binding affinity of each neoantigen to its wild type and a nonlinear dependence on sequence similarity of neoantigens to known antigens. To describe the evolution of a heterogeneous tumour, we evaluate its fitness as a weighted effect of dominant neoantigens in the subclones of the tumour. Our model predicts survival in anti-CTLA-4-treated patients with melanoma and anti-PD-1-treated patients with lung cancer. Importantly, low-fitness neoantigens identified by our method may be leveraged for developing novel immunotherapies. By using an immune fitness model to study immunotherapy, we reveal broad similarities between the evolution of tumours and rapidly evolving pathogens.en_US
dc.format.extent517 - 520en_US
dc.languageengen_US
dc.language.isoen_USen_US
dc.relation.ispartofNatureen_US
dc.rightsAuthor's manuscripten_US
dc.titleA neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapyen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1038/nature24473-
dc.identifier.eissn1476-4687-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy.pdf2.04 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.