Skip to main content

Communication Theoretic Data Analytics

Author(s): Chen, Kwang-Cheng; Huang, Shao-Lun; Zheng, Lizhong; Poor, H Vincent

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1d760
Abstract: Widespread use of the Internet and social networks invokes the generation of big data, which is proving to be useful in a number of applications. To deal with explosively growing amounts of data, data analytics has emerged as a critical technology related to computing, signal processing, and information networking. In this paper, a formalism is considered in which data are modeled as a generalized social network and communication theory and information theory are thereby extended to data analytics. First, the creation of an equalizer to optimize information transfer between two data variables is considered, and financial data are used to demonstrate the advantages of this approach. Then, an information coupling approach based on information geometry is applied for dimensionality reduction, with a pattern recognition example to illustrate the effectiveness of this formalism. These initial trials suggest the potential of communication theoretic data analytics for a wide range of applications.
Publication Date: Apr-2015
Citation: Chen, Kwang-Cheng, Shao-Lun Huang, Lizhong Zheng, and H. Vincent Poor. "Communication theoretic data analytics." IEEE Journal on Selected Areas in Communications 33, no. 4 (2015): 663-675. doi:10.1109/JSAC.2015.2393471
DOI: 10.1109/JSAC.2015.2393471
ISSN: 0733-8716
EISSN: 1558-0008
Pages: 663 - 675
Type of Material: Journal Article
Journal/Proceeding Title: IEEE Journal on Selected Areas in Communications
Version: Author's manuscript



Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.