Skip to main content

Mathematics of machine learning: An introduction

Author(s): Arora, Sanjeev

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1cg32
Full metadata record
DC FieldValueLanguage
dc.contributor.authorArora, Sanjeev-
dc.date.accessioned2021-10-08T19:50:52Z-
dc.date.available2021-10-08T19:50:52Z-
dc.date.issued2018en_US
dc.identifier.citationArora, Sanjeev. "Mathematics of machine learning: An introduction." In Proceedings of the International Congress of Mathematicians (2018): pp. 377-390. doi:10.1142/9789813272880_0017en_US
dc.identifier.urihttps://www.dropbox.com/s/y59petiffzq63gt/main.pdf?dl=0-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1cg32-
dc.description.abstractMachine learning is the subfield of computer science concerned with creating machines that can improve from experience and interaction. It relies upon mathematical optimization, statistics, and algorithm design. Rapid empirical success in this field currently outstrips mathematical understanding. This elementary article sketches the basic framework of machine learning and hints at the open mathematical problems in it.en_US
dc.format.extent377 - 390en_US
dc.language.isoen_USen_US
dc.relation.ispartofProceedings of the International Congress of Mathematiciansen_US
dc.rightsAuthor's manuscripten_US
dc.titleMathematics of machine learning: An introductionen_US
dc.typeConference Articleen_US
dc.identifier.doi10.1142/9789813272880_0017-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/conference-proceedingen_US

Files in This Item:
File Description SizeFormat 
MachineLearningMathematics.pdf407.59 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.