Optimal Single-Choice Prophet Inequalities from Samples
Author(s): Rubinstein, Aviad; Wang, Jack Z; Weinberg, S Matthew
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1c83s
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Rubinstein, Aviad | - |
dc.contributor.author | Wang, Jack Z | - |
dc.contributor.author | Weinberg, S Matthew | - |
dc.date.accessioned | 2021-10-08T19:49:40Z | - |
dc.date.available | 2021-10-08T19:49:40Z | - |
dc.date.issued | 2020 | en_US |
dc.identifier.citation | Rubinstein, Aviad, Jack Z. Wang, and S. Matthew Weinberg. "Optimal Single-Choice Prophet Inequalities from Samples." In 11th Innovations in Theoretical Computer Science Conference (ITCS) (2020): pp. 60:1-60:10. doi:10.4230/LIPIcs.ITCS.2020.60 | en_US |
dc.identifier.issn | 1868-8969 | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr1c83s | - |
dc.description.abstract | We study the single-choice Prophet Inequality problem when the gambler is given access to samples. We show that the optimal competitive ratio of 1/2 can be achieved with a single sample from each distribution. When the distributions are identical, we show that for any constant ε > 0, O(n) samples from the distribution suffice to achieve the optimal competitive ratio (≈ 0.745) within (1+ε), resolving an open problem of [José R. Correa et al., 2019]. | en_US |
dc.format.extent | 60:1 - 60:10 | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | 11th Innovations in Theoretical Computer Science Conference | en_US |
dc.rights | Final published version. This is an open access article. | en_US |
dc.title | Optimal Single-Choice Prophet Inequalities from Samples | en_US |
dc.type | Conference Article | en_US |
dc.identifier.doi | 10.4230/LIPIcs.ITCS.2020.60 | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/conference-proceeding | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
OptSingleChoiceSamples.pdf | 458.97 kB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.