Skip to main content

Experimental designs for identifying causal mechanisms

Author(s): Imai, Kosuke; Tingley, Dustin; Yamamoto, Teppei

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1br0h
Full metadata record
DC FieldValueLanguage
dc.contributor.authorImai, Kosuke-
dc.contributor.authorTingley, Dustin-
dc.contributor.authorYamamoto, Teppei-
dc.date.accessioned2020-02-19T21:21:27Z-
dc.date.available2020-02-19T21:21:27Z-
dc.date.issued2012-11-01en_US
dc.identifier.citationImai, K, Tingley, D, Yamamoto, T. (2013). Experimental designs for identifying causal mechanisms. Journal of the Royal Statistical Society. Series A: Statistics in Society, 176 (1), 5 - 51. doi:10.1111/j.1467-985X.2012.01032.xen_US
dc.identifier.issn0964-1998-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1br0h-
dc.description.abstractExperimentation is a powerful methodology that enables scientists to establish causal claims empirically. However, one important criticism is that experiments merely provide a black box view of causality and fail to identify causal mechanisms. Specifically, critics argue that, although experiments can identify average causal effects, they cannot explain the process through which such effects come about. If true, this represents a serious limitation of experimentation, especially for social and medical science research that strives to identify causal mechanisms. We consider several experimental designs that help to identify average natural indirect effects. Some of these designs require the perfect manipulation of an intermediate variable, whereas others can be used even when only imperfect manipulation is possible. We use recent social science experiments to illustrate the key ideas that underlie each of the designs proposed. © 2012 Royal Statistical Society.en_US
dc.format.extent1 - 38en_US
dc.language.isoenen_US
dc.relation.ispartofJournal of the Royal Statistical Society. Series A: Statistics in Societyen_US
dc.rightsAuthor's manuscripten_US
dc.titleExperimental designs for identifying causal mechanismsen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1111/j.1467-985X.2012.01032.x-
dc.identifier.eissn1467-985X-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
[JRSSSeriesA] Imai etal 13.pdf484.09 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.