Skip to main content

Bayesian inference on structural impulse response functions

Author(s): Plagborg-Møller, Mikkel

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr18756
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPlagborg-Møller, Mikkel-
dc.date.accessioned2019-12-04T18:53:23Z-
dc.date.available2019-12-04T18:53:23Z-
dc.date.issued2019-01en_US
dc.identifier.citationPlagborg-Møller, M. (2019). Bayesian inference on structural impulse response functions. Quantitative Economics, 10 (1), 145 - 184. doi:10.3982/QE926en_US
dc.identifier.issn1759-7323-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr18756-
dc.description.abstractCopyright © 2019 The Author. I propose to estimate structural impulse responses from macroeconomic time series by doing Bayesian inference on the Structural Vector Moving Average representation of the data. This approach has two advantages over Structural Vector Autoregressions. First, it imposes prior information directly on the impulse responses in a flexible and transparent manner. Second, it can handle noninvertible impulse response functions, which are often encountered in applications. Rapid simulation of the posterior distribution of the impulse responses is possible using an algorithm that exploits the Whittle likelihood. The impulse responses are partially identified, and I derive the frequentist asymptotics of the Bayesian procedure to show which features of the prior information are updated by the data. The procedure is used to estimate the effects of technological news shocks on the U.S. business cycle.en_US
dc.format.extent145 - 184en_US
dc.language.isoenen_US
dc.relation.ispartofQuantitative Economicsen_US
dc.rightsFinal published version. This is an open access article.en_US
dc.titleBayesian inference on structural impulse response functionsen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.3982/QE926-
dc.identifier.eissn1759-7331-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
QE.pdf587.27 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.