Skip to main content

Modeling the measles paradox reveals the importance of cellular immunity in regulating viral clearance.

Author(s): Morris, Sinead E; Yates, Andrew J; de Swart, Rik L; de Vries, Rory D; Mina, Michael J; et al

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr17n1r
Abstract: Measles virus (MV) is a highly contagious member of the Morbillivirus genus that remains a major cause of childhood mortality worldwide. Although infection induces a strong MV-specific immune response that clears viral load and confers lifelong immunity, transient immunosuppression can also occur, leaving the host vulnerable to colonization from secondary pathogens. This apparent contradiction of viral clearance in the face of immunosuppression underlies what is often referred to as the 'measles paradox', and remains poorly understood. To explore the mechanistic basis underlying the measles paradox, and identify key factors driving viral clearance, we return to a previously published dataset of MV infection in rhesus macaques. These data include virological and immunological information that enable us to fit a mathematical model describing how the virus interacts with the host immune system. In particular, our model incorporates target cell depletion through infection of host immune cells-a hallmark of MV pathology that has been neglected from previous models. We find the model captures the data well, and that both target cell depletion and immune activation are required to explain the overall dynamics. Furthermore, by simulating conditions of increased target cell availability and suppressed cellular immunity, we show that the latter causes greater increases in viral load and delays to MV clearance. Overall, this signals a more dominant role for cellular immunity in resolving acute MV infection. Interestingly, we find contrasting dynamics dominated by target cell depletion when viral fitness is increased. This may have wider implications for animal morbilliviruses, such as canine distemper virus (CDV), that cause fatal target cell depletion in their natural hosts. To our knowledge this work represents the first fully calibrated within-host model of MV dynamics and, more broadly, provides a new platform from which to explore the complex mechanisms underlying Morbillivirus infection.
Publication Date: 28-Dec-2018
Citation: Morris, Sinead E, Yates, Andrew J, de Swart, Rik L, de Vries, Rory D, Mina, Michael J, Nelson, Ashley N, Lin, Wen-Hsuan W, Kouyos, Roger D, Griffin, Diane E, Grenfell, Bryan T. (2018). Modeling the measles paradox reveals the importance of cellular immunity in regulating viral clearance.. PLoS pathogens, 14 (12), e1007493 - ?. doi:10.1371/journal.ppat.1007493
DOI: doi:10.1371/journal.ppat.1007493
ISSN: 1553-7366
EISSN: 1553-7374
Pages: 1 - 26
Language: eng
Type of Material: Journal Article
Journal/Proceeding Title: PLoS pathogens
Version: Final published version. Article is made available in OAR by the publisher's permission or policy.



Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.