Skip to main content

The Discrete Infinite Logistic Normal Distribution

Author(s): Paisley, John; Wang, Chong; Blei, David M

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr15r83
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPaisley, John-
dc.contributor.authorWang, Chong-
dc.contributor.authorBlei, David M-
dc.date.accessioned2021-10-08T19:44:34Z-
dc.date.available2021-10-08T19:44:34Z-
dc.date.issued2012en_US
dc.identifier.citationPaisley, John, Chong Wang, and David Blei. "The Discrete Infinite Logistic Normal Distribution." Bayesian Analysis 7, no. 4 (2012): pp. 997-1034. doi:10.1214/12-BA734.en_US
dc.identifier.issn1936-0975-
dc.identifier.urihttps://arxiv.org/abs/1103.4789-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr15r83-
dc.description.abstractWe present the discrete infinite logistic normal distribution (DILN), a Bayesian nonparametric prior for mixed membership models. DILN generalizes the hierarchical Dirichlet process (HDP) to model correlation structure between the weights of the atoms at the group level. We derive a representation of DILN as a normalized collection of gamma-distributed random variables and study its statistical properties. We derive a variational inference algorithm for approximate posterior inference. We apply DILN to topic modeling of documents and study its empirical performance on four corpora, comparing performance with the HDP and the correlated topic model (CTM). To compute with large-scale data, we develop a stochastic variational inference algorithm for DILN and compare with similar algorithms for HDP and latent Dirichlet allocation (LDA) on a collection of 350,000 articles from Nature.en_US
dc.format.extent997 - 1034en_US
dc.language.isoen_USen_US
dc.relation.ispartofBayesian Analysisen_US
dc.rightsFinal published version. Article is made available in OAR by the publisher's permission or policy.en_US
dc.titleThe Discrete Infinite Logistic Normal Distributionen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1214/12-BA734-
dc.identifier.eissn1931-6690-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
DiscreteInfiniteLogisticNormalDistribution.pdf1.36 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.